'Authentic' or 'corny': LGBTQ+ young adults respond to visual, thematic and semantic elements of culturally targeted tobacco public education advertisements
Lesbian, gay, bisexual, transgender and queer (LGBTQ+) young adults (YA) experience disparities in nicotine and tobacco use. Mass-reach health communications can prevent nicotine and tobacco initiation and progression, but LGBTQ+adults report low engagement. Although cultural targeting (CT) could reach LGBTQ+YA, we know little about the strategies that resonate with this population. We probed how LGBTQ+YA perceived CT content to inform tobacco public education campaigns on strategies to engage this population.
Advances in the study of the glymphatic system and aging
The glymphatic system is cerebrospinal fluid-brain tissue fluid exchange flow mediated by aquaporin-4 (AQP4) on the end feet of astrocytes for a system, which is capable of rapidly removing brain metabolites and thus maintaining brain homeostasis, and is known as the central immune system. Dysfunction of the glymphatic system causes accumulation of misfolded and highly phosphorylated proteins (amyloid-β and Tau proteins), which destabilizes the proteins, and the body's neuroinflammatory factors are altered causing aging of the immune system and leading to neurodegenerative diseases. Damage to the glymphatic system and aging share common manifestations, as well as unstudied biological mechanisms that are also linked, such as mitochondria, oxidative stress, chronic inflammation, and sleep. In this paper, we first summarize the structure, function, and research methods of the glymphatic system and the relationship between the glymphatic system and the peripheral immune system, and second, sort out and summarize the factors of the glymphatic system in removing metabolites and resolving aging-related diseases and factors affecting aging, to explore its related biological mechanisms, and moreover, to provide a new way of thinking for treating or intervening aging-related diseases.
A Multimethodological Approach for the Chemical Characterization of Edible Insects: The Case Study of
(house cricket) has been recently introduced into the official European list of novel foods, representing an alternative and sustainable food source. Up to now, the chemical characterization of this edible insect has been focused only on specific classes of compounds. Here, three production batches of an powder were investigated by means of a multimethodological approach based on NMR, FT-ICR MS, and GC-MS methodologies. The applied analytical protocol, proposed for the first time in the study of an edible insect, allowed us to identify and quantify compounds not previously reported in crickets. In particular, methyl-branched hydrocarbons, previously identified in other insects, together with other compounds such as citrulline, formate, -terpinene, -cymene, -thujene, -thujene, and 4-carene were detected. Amino acids, organic acids, and fatty acids were also identified and quantified. The improved knowledge of the chemical profile of this novel food opens new horizons both for the use of crickets as a food ingredient and for the use of extracts for the production of new formulations. In order to achieve this objective, studies regarding safety, biological activity, bioaccessibility, and bioavailability are needed as future perspectives in this field.