Phase transitions in porous media
The full quasistatic thermomechanical system of PDEs, describing water diffusion with the possibility of freezing and melting in a visco-elasto-plastic porous solid, is studied in detail under the hypothesis that the pressure-saturation hysteresis relation is given in terms of the Preisach hysteresis operator. The resulting system of balance equations for mass, momentum, and energy coupled with the phase dynamics equation is shown to admit a global solution under general assumptions on the data.
On quasi-linear reaction diffusion systems arising from compartmental SEIR models
The global existence and boundedness of solutions to quasi-linear reaction-diffusion systems are investigated. The system arises from compartmental models describing the spread of infectious diseases proposed in Viguerie et al. (Appl Math Lett 111:106617, 2021); Viguerie et al. (Comput Mech 66(5):1131-1152, 2020), where the diffusion rate is assumed to depend on the total population, leading to quasilinear diffusion with possible degeneracy. The mathematical analysis of this model has been addressed recently in Auricchio et al. (Math Methods Appl Sci 46:12529-12548, 2023) where it was essentially assumed that all sub-populations diffuse at the same rate, which yields a positive lower bound of the total population, thus removing the degeneracy. In this work, we remove this assumption completely and show the global existence and boundedness of solutions by exploiting a recently developed -energy method. Our approach is applicable to a larger class of systems and is sufficiently robust to allow model variants and different boundary conditions.