Random walks in a moderately sparse random environment
A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A random walk in a sparse random environment is a nearest neighbor random walk on that jumps to the left or to the right with probability 12 from every point of and jumps to the right (left) with the random probability λ (1 - λ ) from the point , . Assuming that are independent copies of a random vector and the mean is finite (moderate sparsity) we obtain stable limit laws for , properly normalized and centered, as → . While the case ≤ a.s. for some deterministic > 0 (weak sparsity) was analyzed by Matzavinos et al., the case (strong sparsity) will be analyzed in a forthcoming paper.
TRACTABLE DIFFUSION AND COALESCENT PROCESSES FOR WEAKLY CORRELATED LOCI
Widely used models in genetics include the Wright-Fisher diffusion and its moment dual, Kingman's coalescent. Each has a multilocus extension but under neither extension is the sampling distribution available in closed-form, and their computation is extremely difficult. In this paper we two new multilocus population genetic models, one a diffusion and the other a coalescent process, which are much simpler than the standard models, but which capture their key properties for large recombination rates. The diffusion model is based on a central limit theorem for density dependent population processes, and we show that the sampling distribution is a linear combination of moments of Gaussian distributions and hence available in closed-form. The coalescent process is based on a probabilistic coupling of the ancestral recombination graph to a simpler genealogical process which exposes the leading dynamics of the former. We further demonstrate that when we consider the sampling distribution as an asymptotic expansion in inverse powers of the recombination parameter, the sampling distributions of the new models agree with the standard ones up to the first two orders.
A random walk with catastrophes
Random population dynamics with catastrophes (events pertaining to possible elimination of a large portion of the population) has a long history in the mathematical literature. In this paper we study an ergodic model for random population dynamics with linear growth and binomial catastrophes: in a catastrophe, each individual survives with some fixed probability, independently of the rest. Through a coupling construction, we obtain sharp two-sided bounds for the rate of convergence to stationarity which are applied to show that the model exhibits a cutoff phenomenon.