Journal of Baltic Science Education

Portable, low-field magnetic resonance imaging for evaluation of Alzheimer's disease
Sorby-Adams AJ, Guo J, Laso P, Kirsch JE, Zabinska J, Garcia Guarniz AL, Schaefer PW, Payabvash S, de Havenon A, Rosen MS, Sheth KN, Gomez-Isla T, Iglesias JE and Kimberly WT
Portable, low-field magnetic resonance imaging (LF-MRI) of the brain may facilitate point-of-care assessment of patients with Alzheimer's disease (AD) in settings where conventional MRI cannot. However, image quality is limited by a lower signal-to-noise ratio. Here, we optimize LF-MRI acquisition and develop a freely available machine learning pipeline to quantify brain morphometry and white matter hyperintensities (WMH). We validate the pipeline and apply it to outpatients presenting with mild cognitive impairment or dementia due to AD. We find hippocampal volumes from ≤ 3 mm isotropic LF-MRI scans have agreement with conventional MRI and are more accurate than anisotropic counterparts. We also show WMH volume has agreement between manual segmentation and the automated pipeline. The increased availability and reduced cost of LF-MRI, in combination with our machine learning pipeline, has the potential to increase access to neuroimaging for dementia.
NK1 tachykinin receptor antagonist treatment reduces cerebral edema and intracranial pressure in an ovine model of ischemic stroke
Sorby-Adams AJ, Marian OC, Bilecki IM, Elms LE, Yassi N, Hood RJ, Coller JK, Stuckey SM, Kimberly WT, Farr TD, Leonard AV, Thornton E, Vink R and Turner RJ
Following ischemic stroke, substance P (SP)-mediated neurogenic inflammation is associated with profound blood-brain barrier (BBB) dysfunction, cerebral edema, and elevated intracranial pressure (ICP). SP elicits its effects by binding the neurokinin 1 tachykinin receptor (NK1-R), with administration of an NK1-R antagonist shown to ameliorate BBB dysfunction and cerebral edema in rodent and permanent ovine stroke models. Given the importance of reperfusion in clinical stroke, this study examined the efficacy of NK1-R antagonist treatment in reducing cerebral edema and ICP in an ovine model of transient middle cerebral artery occlusion (tMCAo). Anesthetized sheep (24) were subject to 2-hours tMCAo and randomized (6/group) to receive early NK1-R treatment (days 1-3 post-stroke), delayed NK1-R treatment (day 5 post-stroke), or saline vehicle. At 6-days post-stroke animals were re-anaesthetized and ICP measured, followed by MRI to evaluate infarction, edema and BBB dysfunction. Following both early and delayed NK1-R antagonist administration, ICP was significantly reduced on day 6 compared to vehicle animals (p < 0.05), accompanied by a reduction in cerebral edema, midline shift and BBB dysfunction (p < 0.05). This study demonstrates that NK1-R antagonist treatment is an effective novel therapy for cerebral edema and elevated ICP following stroke in an ovine model, warranting future clinical evaluation.
Diffusion-Weighted Imaging Fluid-Attenuated Inversion Recovery Mismatch on Portable, Low-Field Magnetic Resonance Imaging Among Acute Stroke Patients
Sorby-Adams A, Guo J, de Havenon A, Payabvash S, Sze G, Pinter NK, Jaikumar V, Siddiqui A, Baldassano S, Garcia-Guarniz AL, Zabinska J, Lalwani D, Peasley E, Goldstein JN, Nelson OK, Schaefer PW, Wira CR, Pitts J, Lee V, Muir KW, Nimjee SM, Kirsch J, Iglesias JE, Rosen MS, Sheth KN and Kimberly WT
For stroke patients with unknown time of onset, mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) can guide thrombolytic intervention. However, access to MRI for hyperacute stroke is limited. Here, we sought to evaluate whether a portable, low-field (LF)-MRI scanner can identify DWI-FLAIR mismatch in acute ischemic stroke.
Brain imaging with portable low-field MRI
Kimberly WT, Sorby-Adams AJ, Webb AG, Wu EX, Beekman R, Bowry R, Schiff SJ, de Havenon A, Shen FX, Sze G, Schaefer P, Iglesias JE, Rosen MS and Sheth KN
The advent of portable, low-field MRI (LF-MRI) heralds new opportunities in neuroimaging. Low power requirements and transportability have enabled scanning outside the controlled environment of a conventional MRI suite, enhancing access to neuroimaging for indications that are not well suited to existing technologies. Maximizing the information extracted from the reduced signal-to-noise ratio of LF-MRI is crucial to developing clinically useful diagnostic images. Progress in electromagnetic noise cancellation and machine learning reconstruction algorithms from sparse -space data as well as new approaches to image enhancement have now enabled these advancements. Coupling technological innovation with bedside imaging creates new prospects in visualizing the healthy brain and detecting acute and chronic pathological changes. Ongoing development of hardware, improvements in pulse sequences and image reconstruction, and validation of clinical utility will continue to accelerate this field. As further innovation occurs, portable LF-MRI will facilitate the democratization of MRI and create new applications not previously feasible with conventional systems.
Glyceryl trinitrate for the treatment of ischaemic stroke: Determining efficacy in rodent and ovine species for enhanced clinical translation
Sorby-Adams AJ, Learoyd AE, Bath PM, Burrows F, Farr TD, Leonard AV, Schiessl I, Allan SM, Turner RJ and Trueman RC
Hypertension is a leading risk factor for death and dependency after ischaemic stroke. However, administering anti-hypertensive medications post-stroke remains contentious with concerns regarding deleterious effects on cerebral blood flow and infarct expansion. This study sought to determine the effect of glyceryl trinitrate (GTN) treatment in both lissencephalic and gyrencephalic pre-clinical stroke models. Merino sheep underwent middle cerebral artery occlusion (MCAO) followed by GTN or control patch administration (0.2 mg/h). Monitoring of numerous physiologically relevant measures over 24 h showed that GTN administration was associated with decreased intracranial pressure, infarct volume, cerebral oedema and midline shift compared to vehicle treatment (p < 0.05). No significant changes in blood pressure or cerebral perfusion pressure were observed. Using optical imaging spectroscopy and laser speckle imaging, the effect of varying doses of GTN (0.69-50 µg/h) on cerebral blood flow and tissue oxygenation was examined in mice. No consistent effect was found. Additional mice undergoing MCAO followed by GTN administration (doses varying from 0-60 µg/h) also showed no improvement in infarct volume or neurological score within 24 h post-stroke. GTN administration significantly improved numerous stroke-related physiological outcomes in sheep but was ineffective in mice. This suggests that, whilst GTN administration could potentially benefit patients, further research into mechanisms of action are required.