Constrained water access to the active site of cytochrome P450 from the piezophilic bacterium Photobacterium profundum
Living species inhabiting ocean deeps must adapt to high hydrostatic pressure. This adaptation, which must enable functioning under conditions of promoted protein hydration, is especially important for proteins such as cytochromes P450 that exhibit functionally important hydration-dehydration dynamics. Here we study the interactions of substrates with cytochrome P450-SS9, a putative fatty acid hydroxylase from the piezophilic bacterium Photobacterium profundum SS9, and characterize the protein's barotropic properties. Comparison of P450-SS9 with cytochrome P450BM-3, a mesophilic fatty acid hydroxylase, suggests that P450-SS9 is characterized by severely confined accessibility and low water occupancy of the active site. This feature may reveal a mechanism of structural adaptation of the piezophilic enzyme. We also demonstrate that saturated and unsaturated fatty acids exert opposite effects on solvent accessibility and hydration of the active site. Modulation of the protein conformation by fatty acids is hypothesized to have an important physiological function in the piezophile.
Adaptations for Pressure and Temperature Effects on Loop Motion in and Dihydrofolate Reductase
Determining how enzymes in piezophilic microbes function at high pressure can give insights into how life adapts to living at high pressure. Here, the effects of pressure and temperature on loop motions are compared (Ec) and (Mp) dihydrofolate reductase (DHFR) via molecular dynamics simulations at combinations of the growth temperature and pressure of the two organisms. Analysis indicates that a flexible CD loop in MpDHFR is an adaptation for cold because it makes the adenosine binding subdomain more flexible. Also, analysis indicates that the Thr113-Glu27 hydrogen bond in MpDHFR is an adaptation for high pressure because it provides flexibility within the loop subdomain compared to the very strong Thr113-Asp27 hydrogen bond in EcDHFR, and affects the correlation of the Met20 and GH loops. In addition, the results suggest that temperature might affect external loops more strongly while pressure might affect motion between elements within the protein.