DEVELOPMENTAL PALEOBIOLOGY OF THE VERTEBRATE SKELETON
Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary. In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring the development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM) to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties.
BEYOND THE PRINT-VIRTUAL PALEONTOLOGY IN SCIENCE PUBLISHING, OUTREACH, AND EDUCATION
Virtual paleontology unites a variety of computational techniques and methods for the visualization and analysis of fossils. Due to their great potential and increasing availability, these methods have become immensely popular in the last decade. However, communicating the wealth of digital information and results produced by the various techniques is still exacerbated by traditional methods of publication. Transferring and processing three-dimensional information, such as interactive models or animations, into scientific publications still poses a challenge. Here, we present different methods and applications to communicate digital data in academia, outreach and education. Three-dimensional PDFs, QR codes, anaglyph stereo imaging, and rapid prototyping-methods routinely used in the engineering, entertainment, or medical industries-are outlined and evaluated for their potential in science publishing and public engagement. Although limitations remain, these are simple, mostly cost-effective, and powerful tools to create novel and innovative resources for education, public engagement, or outreach.
Acritarchs and microfossils from the Mesoproterozoic Bangemall Group, northwestern Australia
Three microfossil assemblages occur in the Mesoproterozoic Bangemall Group (1625-1000 Ma) of northwestern Australia, each occupying a different environmental and taphonomic setting. In peritidal environments, benthic prokaryotic filaments and spheroids of matting habit and small size were permineralized by early diagenetic silicification of stromatolitic carbonates. In shallow subtidal environments, benthic filaments of large size and nonmatting habit and planktonic sphaeromorph acritarchs with thin walls and moderate dimensions were compressed in mildly kerogenous shale. In deeper subtidal environments, planktonic megasphaeromorph acritarchs with thick walls were initially entombed in concretionary nodules in highly kerogenous shale and then permineralized by silica during later diagenesis. Taxonomic diversity and numerical abundance evidently decrease offshore. The three assemblages have typical Mesoproterozoic aspects: peritidal benthic habitats were dominated by Siphonophycus-Sphaerophycus-Eosynechococcus-Myxococcoides-Palaeopleurocapsa, shallow subtidal settings were occupied by Siphonophycus-Leiosphaeridia-Pterosphermopsimorpha-Satka, and offshore plankton consisted solely of very large chuarid acritarchs. Because of its taphonomic restriction to mid-intertidal stromatolites, the peritidal assemblage can be equated in microenvironment with a similar assemblage in the Neoproterozoic Draken Conglomerate, suggesting that ecological stasis at the community level can last for intervals up to 900 million years. In the deeper subtidal assemblage, the common chuarid has an unusual mode of preservation, in three dimensions in early diagenetic concretions, revealing that it possesses a thick multilamellate wall. Because of this distinctive ultrastructure, the new genus Crassicorium is erected for these fossils, which are among the oldest indubitable eukaryotes. Very large (34-55 micrometers in diameter) filaments from shallow subtidal habitats are assigned to the emended species Siphonophycus punctatum.
The youngest Ediacaran fossils from southern Africa
Discovery of fossils of the Ediacara biota near the top of the Spitzkopf Member at farm Swanpunt extends the known range of these remains in Namibia more than 600 m to near the sub-Cambrian unconformity. The fossiliferous beds occur approximately 100 m above a volcanic ash dated at 543 +/- 1 Ma, and thus may be the youngest Proterozoic Ediacara-type fossils reported anywhere in the world. Fossils are preserved within and on the tops of dm-thick beds of storm-deposited sandstone at two stratigraphic levels; the environment is interpreted as open marine, generally calm but with episodic disruptions by storm waves, and probably within the euphotic zone. The presence of Pteridinium carolinaense (St. Jean), which is also known from the classic sections in Ediacara and the White Sea among others, reinforces evidence from geochronology and chemostratigraphy that the Swartpunt section is terminal Neoproterozoic in age. The new genus and species Swartpuntia germsi is a large, multifoliate frond that exhibits at least three quilted petaloids. Macroscopically, Swartpuntia resembles Pteridinium and Ediacara-type fronds such as Charniodiscus traditionally interpreted as Cnidaria, whereas microscopically it exhibits segmentation that is remarkably similar to that of the putative worm Dickinsonia. Combination of diagnostic characters of these supposedly disparate groups in a single species suggests that many species of quilted Ediacaran organisms were more similar to each other than they were to any modern groups, and provides support for the concept of the "Vendobionta" as a late Neoproterozoic group of mainly multifoliate organisms with a distinctive quilted segmentation.
Middle and Late Cambrian sponge spicules from Hunan, China
Abundant and well-preserved assemblages of disarticulated sponge spicules occur in Middle and Late Cambrian platform carbonates of western Hunan, China. Assemblages recovered from 11 stratigraphic horizons include calcisponges, demosponges, and hexactinellids. Hexactinellida, in particular, are both abundant and diverse in Upper Cambrian carbonates. Comparison with spicule assemblages from Australia indicates that many of these taxa have long stratigraphic ranges, limiting their use in correlation. The morphological diversity of these spicules exceeds that known for living siliceous sponges, supporting the observation that during the Cambrian radiation, sponges, like other metazoans, evolved a variety of architectural forms not observed in later periods. Like conodonts, individual sponges can produce more than one spicule form; thus, an "apparatus genus" concept based on multiple co-occurring elements may eventually prove useful in the biostratigraphic and paleobiological interpretation of disarticulated sponge spicules. Four distinctive forms are recognized as new taxa: Australispongia sinensis new genus and species, Flosculus gracilis new genus and species, Pinnatispongia bengtsoni new genus and species, and Nabaviella paibiensis new species.
Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, northern Siberia
Silicified peritidal carbonates of the Mesoproterozoic Kotuikan and Yusmastakh Formations, Anabar Uplift, northeastern Siberia, contain exceptionally well-preserved microfossils. The assemblage is dominated by ellipsoidal akinetes of nostocalean cyanobacteria (Archaeoellipsoides) and problematic spheroidal unicells (Myxococcoides); both are allochthonous and presumably planktonic. The assemblage also includes distinctive mat-forming scytonematacean and entophysalidacean cyanobacteria, diverse short trichomes interpreted as cyanobacterial hormogonia or germinated akinetes, rare longer trichomes, and several types of colonial unicells. Although many taxa in the Kotuikan-Yusmastakh assemblage are long-ranging prokaryotes, the overall character of the assemblage is distinctly Mesoproterozoic, with its major features shared by broadly coeval floras from Canada, China, India, and elsewhere in Siberia. Microfossils also occur in middle to inner shelf shales of the Ust'-Il'ya and lower Kotuikan Formations. Leiosphaerid acritarchs (up to several hundred microns in diameter) characterize this facies. As in other Mesoproterozoic acritarch assemblages, acanthomorphic and other complex forms that typify Neoproterozoic assemblages are absent. The combination in Billyakh assemblages of exceptional preservation and low eukaryotic diversity supports the hypothesis that nucleated organisms diversified markedly near the Mesoproterozoic-Neoproterozoic boundary. The assemblages also demonstrate the antiquity of cyanobacteria capable of cell differentiation and suggest the importance of both changing peritidal substrates and evolving eukaryotes in determining stratigraphic patterns of Proterozoic prokaryotes. The permineralized assemblage contains 33 species belonging to 17 genera. Ten new species or new combinations are proposed: Archaeoellipsoides costatus n. sp., A. elongatus n. comb., A. dolichos n. comb., A. minor n. nom., A. crassus n. comb., A. major n. comb., A. bactroformis n. sp., Veteronostocale medium n. sp., Filiconstrictosus cephalon n. sp., and Partitiofilum yakschinii n. sp.
Microfossils in stromatolitic cherts from the upper proterozoic Min'yar formation, southern Ural Mountains, USSR
A diverse assemblage of exceptionally well-preserved microorganisms, including several previously unknown taxa, has been discovered in stromatolitic black chert from the ca. 680-790 Ma-old Min'yar Formation (Suite) of the southern Ural Mountains, USSR. Like most ancient and modern stromatolitic communities, the Min'yar microflora is dominated by filamentous and unicellular cyanobacteria. Geologic evidence indicates that the microbial community inhabited a shallow water, presumably marine environment. The microfossils occur in two interlaminated and thinly interbedded sedimentary fabrics: 1, fact to wavy-laminated Stratifera-like stromatolitic laminae that presumably were deposited during periods of little wave action; and 2, intraclast grainstone that formed as a result of desiccation and (or) wave agitation. Microfossils are both better preserved and more abundant in the intraclasts than in the Stratifera-like laminae. The occurrence of probable pseudomorphs after replacement of sulfate minerals provides additional evidence for a shallow water, periodically emergent depositional environment for the Min'yar microbial mats. Kerogenous microfossils are three-dimensionally preserved, permineralized in fine-grained silica of primary or early diagenetic origin. In many aspects the Min'yar assemblage is comparable to that of the well-known ca. 850 Ma-old Bitter Springs Formation of central Australia. The following taxa are herein described: Division? Schizomycophyta or ? Cyanophyta, Biocatenoides sp.; Family Oscillatoriaceae, Eomycetopsis robusta Schopf emend. Knoll and Golubic, Rhicnonema antiquum Hofmann, Entosphaeroides? sp., Palaeolyngbya? sp., Siphonophycus capitaneum n. gen., n. sp.; Family? Oscillatoriaceae or? Rivulariaceae, Caudiculophycus? sp.; Family? Scytonemataceae or? Stigonemataceae, Ramivaginalis uralensis n. gen., n. sp.; Family Chroococcaceae, Sphaerophycus medium Horodyski and Donaldson, Eosynechococcus amadeus Knoll and Golubic, Gloeodiniopsis lamellosa Schopf emend. Knoll and Golubic, Gloeodiniopsis magna n. sp., Eoaphanocapsa oparinii n. gen., n. sp.; Division? Chlorophycophyta or? Rhodophycophyta, Glenobotrydion majorinum Schopf and Blacic. Also discussed in the taxonomic section, but not formally described, are intermediate-diameter tubular sheaths (Oscillatoriaceae), small tubular sheaths enclosed by larger tubular sheaths (Oscillatoriaceae?), and undifferentiated spheroidal unicells.
Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, Central East Greenland
Silicified oolites and pisolites from Bed 18 of the Upper Proterozoic (about 700-800 Ma) Limestone-Dolomite "Series" of the Eleonore Bay Group, central East Greenland, contain a diverse suite of organically preserved microfossils that is, for the most part. [Of the] assemblages previously described from Proterozoic cherts and shales. Three principal assemblages occur in these rocks: 1) a class bound assemblage found in detrital carbonate grains (now silicified) that served as nuclei for ooid and pisoid growth, as well as in uncoated mud and mat clasts that were carried into the zone of ooid and pisoid deposition; 2) an epilithic and interstitial assemblage consisting of microorganisms that occurred on top of and between grains; and 3) a euendolithic assemblage composed of microbes that actively bored into coated grains. The Upper Proterozoic euendolithic assemblage closely resembles a community of euendolithic cyanobacteria found today in shallow marine ooid sands of the Bahama Banks. Thirteen species are described, of which eight are new, five representing new genera: Eohyella dichotoma n. sp., Eohyella endoatracta n. sp., Eohyella rectoclada n. sp., Thylacocausticus globorum n. gen. and sp., Cunicularius halleri n. gen. and sp., Graviglomus incrustus n. gen. and sp., Perulagranum obovatum n. gen. and sp., and Parenchymodiscus endolithicus n. gen. and sp.
Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen
The Upper Proterozoic (ca. 700-800 Ma old) Backlundtoppen Formation, northeastern Spitsbergen, preserves an abundant and varied record of ancient microbial life. Five distinctive microfossil assemblages occur in five equally distinct sedimentary settings; differences among the assemblages appear to reflect original ecological heterogeneity, although taphonomic circumstance may contribute to some distinctions. Microfossil assemblages occur in: oncolites, oolites, and pisolites; stratiform stromatolites and associated intraclastic rudites; partially silicified micrites; and siltites interbedded with quartz arenites. Individual assemblages contain one to eight differentiable taxa; a minimum of 17 distinct populations is present in the formation as a whole. Additional microbial community diversity an be inferred from the presence of domal, columnar, pseudocolumnar, and coniform stromatolites, none of which contains microfossils. On the basis of macrostructure, four stromatolite types appear to be present, but only three distinct mat-building communities can be inferred from microstructural features. Eohyella elongata n. sp., a euendolithic cyanobacterium found in silicified pisolites, is described as new.
Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: origin, diagenesis, and implications
Samples from the Huns Limestone Member, Urusis Formation, Nama Group, at two adjacent localities in southern Namibia contain thin foliose to arched, sheet-like carbonate crusts that are 100-500 micrometers thick and up to 5 cm in lateral dimension. Morphologic, petrographic, and geochemical evidence supports the interpretation of these delicate crusts as biogenic, most likely the remains of calcified encrusting metaphytes. The original sediments of the fossiliferous samples contained aragonitic encrusting algae, botryoidal aragonite cements, and an aragonite mud groundmass. Spherulites within the precursor mud could represent bacterially induced mineral growths or the concretions of marine rivularian cyanobacteria. Original textures were severely disrupted during the diagenetic transition of aragonite to low-magnesian calcite, but some primary structures remain discernible as ghosts in the neomorphic mosaic. Gross morphology, original aragonite mineralogy, and hypobasal calcification indicate that the crusts are similar to late Paleozoic phylloid algae and extant peyssonnelid red algae. Structures interpreted as possible conceptacles also suggest possible affinities with the Corallinaceae. Two species of Cloudina, interpreted as the remains of a shelly metazoan, are also known from limestones in the Nama Group. It is possible, therefore, that skeletalization in metaphytes and animals arose nearly simultaneously near the end of the Proterozoic Eon.
Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen
Carbonates and rare shales of the ca 700-800 Ma old Draken Conglomerate Formation, northeastern Spitsbergen, preserve a record of environmental variation within a Neoproterozoic tidal flat/lagoon complex. Forty-two microfossil taxa have been recognized in Draken rocks, and of these, 39 can be characterized in terms of their paleoenvironmental distributions along a gradient from the supratidal zone to permanently submerged lagoons. Supratidal to subtidal trends include: increasing microbenthic diversity, increasing abundance and diversity of included allochthonous (presumably planktonic) elements, decreasing sheath thickness of mat-building organisms (with significant taphonomic consequences), and an increasing sediment/fossil ratio in fossiliferous rocks. Five principal and several minor biofacies can be distinguished. The paleoecological resolution obtainable in the Draken Conglomerate Formation rivals that achieved for most Phanerozoic fossil deposits. It documents the complexity and diversity of Proterozoic coastal ecosystems and indicates that both environment and taphonomy need to be taken into explicit consideration in attempts to understand evolutionary trends in early fossil record. Three species, Coniunctiophycus majorinum, Myxococcoides distola, and M. chlorelloidea, are described as new; Siphonophycus robustum, Siphonophycus septatum, and Gorgonisphaeridium maximum are proposed as new combinations.
A new species of Late Cretaceous crab (Brachyura: Carcineretidae) from Albion Island, Belize)
A new species of carcineretid crab, Carcineretes planetarius, is described from the Upper Cretaceous (lower Maastrichtian) Barton Creek Dolomite at Albion Island, Belize. The age is based on the stratigraphic range of associated nerineid gastropods and correlation with nannoplankton, benthic foraminifera, and the other known congeneric species of crab found in Jamaica. Confirmation of this age aids in constraining the timing of ejecta deposits of the Chicxulub impact found at the top of Barton Creek Dolomite exposed on Albion Island. Paleoenvironmental and paleoecological analyses suggest that these crabs were swimmers in lagoonal settings, capable of burrowing a few centimeters into the mud for protection.
A problematic animal fossil from the early Cambrian Hetang Formation, South China
The lower-middle Hetang Formation (Cambrian Stage 2-3) deposited in slope-basinal facies in South China is well-known for its preservation of the earliest articulated sponge fossils, providing an important taphonomic window into the Cambrian explosion. However, the Hetang Formation also hosts a number of problematic animal fossils that have not been systematically described. This omission results in an incomplete picture of the Hetang biota and limits its contribution to the understanding of the early evolution of animals. Here we describe a new animal taxon, Tang and Xiao, new genus new species, from the middle Hetang Formation in the Lantian area of southern Anhui Province, South China. Specimens are preserved as carbonaceous compressions, although some are secondarily mineralized. A comprehensive analysis using reflected light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and micro-CT reveals that the new species is characterized by a spheroidal to fusoidal truss-like structure consisting of rafter-like crossbars, some of which are secondarily baritized and may have been internally hollow. Some specimens have aperture-like structures that are broadly similar to oscula of sponges, whereas others show evidence of a medial split reminiscent of gaping carapaces. While the phylogenetic affinity of Tang and Xiao, new genus new species remains problematic, we propose that it may represent carapaces of bivalved arthropods or more likely sponges in early life stages. Along with other problematic metazoan fossils such as hyolithids and sphenothallids, Tang and Xiao, new genus new species adds to the diversity of the sponge-dominated Hetang biota in an early Cambrian deep-water slope-basinal environment.