High levels of endemism and local differentiation in the fungal and algal symbionts of saxicolous lecideoid lichens along a latitudinal gradient in southern South America
Saxicolous, lecideoid lichenized fungi have a cosmopolitan distribution but, being mostly cold adapted, are especially abundant in polar and high-mountain regions. To date, little is known of their origin or the extent of their trans-equatorial dispersal. Several mycobiont genera and species are thought to be restricted to either the Northern or the Southern Hemisphere, whereas others are thought to be widely distributed and occur in both hemispheres. However, these assumptions often rely on morphological analyses and lack supporting molecular genetic data. Also unknown is the extent of regional differentiation in the southern polar regions. An extensive set of lecideoid lichens (185 samples) was collected along a latitudinal gradient at the southern end of South America. Subantarctic climate conditions were maintained by increasing the elevation of the collecting sites with decreasing latitude. The investigated specimens were placed in a global context by including Antarctic and cosmopolitan sequences from other studies. For each symbiont three markers were used to identify intraspecific variation (mycobiont: ITS, mtSSU, ; photobiont: ITS, psbJ-L, COX2). For the mycobiont, the saxicolous genera , , and were phylogenetically re-evaluated, along with their photobionts and . For several globally distributed species groups, the results show geographically highly differentiated subclades, classified as operational taxonomical units (OTUs), which were assigned to the different regions of southern South America (sSA). Furthermore, several small endemic and well-supported clades apparently restricted to sSA were detected at the species level for both symbionts.
Lichens and associated fungi from Glacier Bay National Park, Alaska
Lichens are widely acknowledged to be a key component of high latitude ecosystems. However, the time investment needed for full inventories and the lack of taxonomic identification resources for crustose lichen and lichenicolous fungal diversity have hampered efforts to fully gauge the depth of species richness in these ecosystems. Using a combination of classical field inventory and extensive deployment of chemical and molecular analysis, we assessed the diversity of lichens and associated fungi in Glacier Bay National Park, Alaska (USA), a mixed landscape of coastal boreal rainforest and early successional low elevation habitats deglaciated after the Little Ice Age. We collected nearly 5000 specimens and found a total of 947 taxa, including 831 taxa of lichen-forming and 96 taxa of lichenicolous fungi together with 20 taxa of saprotrophic fungi typically included in lichen studies. A total of 98 species (10.3% of those detected) could not be assigned to known species and of those, two genera and 27 species are described here as new to science: gen. et sp. nov., , , gen. et sp. nov., , , , , , , , , , , , , , , , , , , , , , and . An additional 71 'known unknown' species are cursorily described. Four new combinations are made: (G. K. Merr.) T. Sprib., (Degel.) T. Sprib., (Hue) T. Sprib. & Ekman and (Th. Fr.) T. Sprib. & Resl. Thirty-eight taxa are new to North America and 93 additional taxa new to Alaska. We use four to eight DNA loci to validate the placement of ten of the new species in the orders , , , , and the broader class Lecanoromycetes with maximum likelihood analyses. We present a total of 280 new fungal DNA sequences. The lichen inventory from Glacier Bay National Park represents the second largest number of lichens and associated fungi documented from an area of comparable size and the largest to date in North America. Coming from almost 60°N, these results again underline the potential for high lichen diversity in high latitude ecosystems.
Morphological, chemical and species delimitation analyses provide new taxonomic insights into two groups of
The genus (), with approximately 300 species, has been subject to few phylogenetic studies. Consequently taxonomic hypotheses in are largely reliant on phenotypic data, while hypotheses incorporating DNA dependent methods remain to be tested. Here we investigate / and the group, which previously have not been subjected to comprehensive molecular and phenotypic studies. We conducted detailed morphological, anatomical, chemical, molecular phylogenetic and species delimitation studies including 24 newly sequenced specimens. We propose that and are conspecific and that chemical morphs within the group should be recognized as distinct species. We also propose the placement of the recently described genus in .
Molecular support for the recognition of the Mycoblastus fucatus group as the new genus Violella (Tephromelataceae, Lecanorales)
The crustose lichen genus Mycoblastus in the Northern Hemisphere includes eight recognized species sharing large, simple ascospores produced 1-2 per ascus in strongly pigmented biatorine apothecia. The monophyly of Mycoblastus and the relationship of its various species to Tephromelataceae have never been studied in detail. Data from ITS rDNA and the genes coding for translation elongation factor 1-α and DNA replication licensing factor mini-chromosome maintenance complex 7 support the distinctness of Mycoblastus s. str. from the core of the Tephromelataceae, but recover M. fucatus and an undescribed Asian species as strongly supported within the latter group. We propose accommodating these two species in a new genus, Violella, which is characterized by its brownish inner ascospore walls, Fucatus-violet hymenial pigment granules and secondary chemistry, and discuss the position of Violella relative to Calvitimela and Tephromela. We describe the new species Violella wangii T. Sprib. & Goffinet to accommodate a new species with roccellic acid from Bhutan, China, India and the Russian Far East. We also exclude Mycoblastus indicus Awasthi & Agarwal from the genus Mycoblastus and propose for it the new combination Malmidea indica (Awasthi & Agarwal) Hafellner & T. Sprib.
A contribution to the taxonomy of the genus Rinodina (Physciaceae, lichenized Ascomycotina) using combined ITS and mtSSU rDNA data
To test the phylogenetic position of phenotypically peculiar species in the Physciaceae we generated 47 new sequences (26 of nrITS region and 21 of mtSSU rDNA) from 19 crustose taxa of Physciaceae mainly from the genus Rinodina. Phylogenetic analysis confirmed the Buellia and Physcia groups. The analysis revealed a considerable variability of characters traditionally used for classification, especially in the delimitation of the genera Buellia and Rinodina. While ascus types agree well with the distinction of the Buellia and Physcia groups, none of the other traditional characters, including excipulum type and ascospore thickening, were consistent within subclades of the Physcia group. We suggest that both excipulum type and ascospore characters are rather dynamic in the evolution of Rinodina species and only appear consistent in morphologically more complex foliose and fruticose groups, which are characterized by thallus characters not present in the crustose groups. Two recent taxonomic changes are supported by molecular characters: Endohyalina insularis (syn. 'Rinodina' insularis) and Rinodina lindingeri (syn. 'Buellia' lindingeri). In addition Rinodina parvula (syn. 'Buellia' parvula) is reinstated. New records for Endohyalina brandii, E. diederichii, E. insularis and Rinodina albana are presented.
Epilithic lichens in the Beacon sandstone formation, Victoria Land, Antarctica
The epilithic lichen flora on the Beacon sandstone formation in Victoria Land consists of seven species: Acarospora gwynnii Dodge & Rudolph, Buellia grisea Dodge & Baker, B. pallida Dodge & Baker, Carbonea capsulata (Dodge & Baker) Hale comb. nov., Lecanora fuscobrunnea Dodge & Baker, Lecidea cancriformis Dodge & Baker, and L. siplei Dodge & Baker. The typification of the species is given along with descriptions and distribution in Antarctica.