Pro-fertility and Antioxidant Potentials of Vigna unguiculata (Cowpea) Protein Isolate and Essential Oil: An In vivo and In silico Studies
Vigna unguiculata (Cowpea), a legume rich in phytochemicals, has been traditionally used to improve fertility and treat various ailments. This study used in-silico and in-- vivo methods to evaluate the effects of cowpea protein isolate and essential oil on reproductive hormonal and antioxidant indices.
Amphibian-Derived Antimicrobial Peptides: Essential Components of Innate Immunity and Potential Leads for New Antibiotic Development
Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs). These peptides are secreted by granular glands in the skin and protect the animal against microorganisms entering its body through the skin. AMPs offer an effective and rapid defense against pathogenic microorganisms and have cationic and amphiphilic structures. These peptides are small gene-encoded molecules of 8-50 amino acid residues synthesized by ribosomes. These small molecules typically exhibit activity against bacteria, viruses, fungi, and even cancer cells. It is known that today's amphibian AMPs originated from a common precursor gene 150 million years ago and that the origin of these peptides is preprodermaseptins. Today, antibiotic resistance has occurred due to the incorrect use of antibiotics. Traditional antibiotics are becoming increasingly inadequate. AMPs are considered promising candidates for the development of new-generation antibiotics. Therefore, new antibiotic discoveries are needed. AMPs are suitable molecules for new-generation antibiotics that are both fast and have different killing mechanisms. One of the biggest problems in the clinical applications of AMPs is their poor stability. AMPs generally have limited tropical applications because they are sensitive to protease degradation. Coating these peptides with nanomaterials to make them more stable can solve this problem.
ZP3 Expression in Pancreatic Adenocarcinoma: Its Implications for the Prognosis and Therapy
The role of Zona pellucida glycoprotein 3 (ZP3) is unclear in pancreatic adenocarcinoma (PAAD).
MARVELD1 Promotes the Invasiveness in Pancreatic Adenocarcinoma through the Activation of Epithelial-to-Mesenchymal Transition
MARVEL domain-containing 1 (MARVELD1) has been implicated in the progression of several cancers, but its role in pancreatic adenocarcinoma (PAAD) remains poorly understood.
ZNF165: A Pan-Cancer Biomarker with Prognostic and Therapeutic Potential
The role of ZNF165 in only a few tumors has been reported. ZNF165 plays an important role in liver cancer, gastric cancer, and breast cancer, especially in regulating the immune microenvironment, promoting tumor cell proliferation and migration, and serving as a potential target for immunotherapy.
Molecular Interactions of the Antimicrobial Peptide Tritrpticin with Mixed Nanoaggregates: A Fluorescence Spectroscopy Study
Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers.
Identifying the Role of Individual Seal IAPP Amino Acids in Inhibiting the Aggregation of Human IAPP
The progression of type 2 diabetes in humans appears to be linked to the loss of insulin-producing β-cells. One of the major contributors to β-cell loss is the formation of toxic human IAPP amyloid (hIAPP, Islet Amyloid Polypeptide, amylin) in the pancreas. Inhibiting the formation of toxic hIAPP amyloid could slow, if not prevent altogether, the progression of type 2 diabetes. Many non-human organisms also express amyloidogenic IAPP variants known to kill pancreatic cells and give rise to diabetes-like symptoms. Surprisingly, some of these non-human IAPP variants function as inhibitors of hIAPP aggregation, raising the possibility of developing non-human IAPP peptides into anti-diabetic therapeutic peptides. One such inhibitory IAPP variant is seal IAPP, which has been shown to inhibit hIAPP aggregation. Seal IAPP only differs from hIAPP by three amino acids. In this study, each of the six seal/human IAPP permutations was analyzed to identify the role of each of the three amino acid positions in inhibiting hIAPP aggregation.
Targeting APE1: Advancements in the Diagnosis and Treatment of Tumors
With the emergence of the precision medicine era, targeting specific proteins has emerged as a pivotal breakthrough in tumor diagnosis and treatment. Apurinic/apyrimidinic Endonuclease 1 (APE1) is a multifunctional protein that plays a crucial role in DNA repair and cellular redox regulation. This article comprehensively explores the fundamental mechanisms of APE1 as a multifunctional enzyme in biology, with particular emphasis on its potential significance in disease diagnosis and strategies for tumor treatment. Firstly, this article meticulously analyzes the intricate biological functions of APE1 at a molecular level, establishing a solid theoretical foundation for subsequent research endeavors. In terms of diagnostic applications, the presence of APE1 can be detected in patient serum samples, biopsy tissues, and through cellular in situ testing. The precise detection methods enable changes in APE1 levels to serve as reliable biomarkers for predicting tumor occurrence, progression, and patient prognosis. Moreover, this article focuses on elucidating the potential role of APE1 in tumor treatment by exploring various inhibitors, including nucleic acid-based inhibitors and small molecule drug inhibitors categories, and revealing their unique advantages in disrupting DNA repair function and modulating oxidative-reduction activity. Finally, the article provides an outlook on future research directions for APE1 while acknowledging major technical difficulties and clinical challenges that need to be overcome despite its immense potential as a target for tumor therapy.
Exploring New Structures of Kinase Inhibitors and Multitarget Strategies in Alzheimer's Disease Treatment
Alzheimer's disease (AD) treatments currently available have ineffective results. Previously employed Acetylcholine esterase inhibitors and memantine, an NMDA receptor antagonist, target a single target structure that plays a complex role in the multifactorial progression of disease. Memantine moderates the toxic effects of excessive glutamate activity by blocking NMDA receptors, which decreases neurotoxicity in AD, while acetylcholine esterase inhibitors function by blocking cholinergic receptors (muscarinic and nicotinic), preventing the breakdown of acetylcholine, thereby enhancing cholinergic transmission, thus improving cognitive functions in mild to moderate stages of AD. Every drug class targets a distinct facet of the intricate pathophysiology of AD, indicating the diverse strategy required to counteract the advancement of this neurodegenerative disorder. Thus, patients are currently not getting much benefit from current drugs. A closer look at the course of AD revealed several potential target structures for future drug discovery. AD drug development strategies focus on developing new target structures in addition to well-established ones for combination treatment regimens, ideally with a single drug that can target two different target structures. Because of their roles in AD progression pathways like pathologic tau protein phosphorylations as well as amyloid β toxicity, protein kinases have been identified as potential targets. This review will give a quick rundown of the first inhibitors of single protein kinases, such as glycogen synthase kinase (gsk3) β, along with cyclin-dependent kinase 5. We will also look into novel inhibitors that target recently identified protein kinases in Alzheimer's disease, such as dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Additionally, multitargeting inhibitors, which target multiple protein kinases as well as those thought to be involved in other processes related to AD will be discussed. This kind of multitargeting offers prospective hope for improved patient outcomes down the road since it is the most effective way to impede multifactorial disease development.
Structural and Functional Insights into UDGs
Endogenous or exogenous DNA damage needs to be repaired, therefore, cells in all the three domains have repair pathways to maintain the integrity of their genetic material. Uracil DNA glycosylases (UDGs), also known as UNGs (uracil-DNA N-glycosylases), are part of the base-excision repair (BER) pathway. These enzymes specifically remove uracil from DNA molecules by cleaving the glycosidic bond between the uracil base and the deoxyribose sugar. UDGs can be broadly classified into six families, and each of them share conserved motifs that are critical for substrate recognition and catalysis. Recently, an unconventional UDG known as UDGX has been identified from the species Mycobacterium smegmatis, which is different from other UDG members in forming an irreversible and extremely stable complex with DNA that is resistant to even harsh denaturants such as SDS, NaOH, and heat. This suicide inactivation mechanism prevents uracil excision and might play a protective role in maintaining genome integrity, as bacterial survival under hypoxic conditions is reduced due to the overexpression of MsmUDGX. Additionally, due to the importance of UDGs, the number of structures has been resolved. Moreover, high-resolution 3D structures of apo MsmUDGX, as well as uracil and DNAbound forms, are available in PDB. This review aims to provide insights into the specific structural- functional aspects of each UDG family member for theragnostic applications.
Leptin/Melanocortin Pathway in Cholelithiasis Patients: A Diagnostic Perspective?
Cholelithiasis is the most prevalent inflammatory condition of the gallbladder. The regulation of biological processes, including energy homeostasis, and control of body weight are key mechanisms that the leptin and melanocortin pathways play a role in. Cholelithiasis is the most prevalent inflammatory condition of the gallbladder. There are various risk factors for the development of gallstone disease, especially weight gain, and obesity is just one of them. This risk factor can be minimized by maintaining appetite and energy balance. Here, leptin and melanocortin pathways are the key mechanisms in maintaining appetite and energy homeostasis.
Overexpression of HIF2α Enhances the Angiogenesis-Promoting Effect of hUC-MSC-Derived Extracellular Vesicles by Stimulating miR-146a
This study aimed to explore whether excessive HIF2α can amplify the impact of human Umbilical Cord Mesenchymal Stem Cell-derived Extracellular Vesicles (hUC-MSC- EVs) on endothelial cells.
Recombinant Production of Ib-AMP4 and Oncorhyncin II Antimicrobial Peptides and Antimicrobial Synergistic Assessment on the Treatment of Staphylococcus aureus Under in vitro Condition
Methicillin-resistant Staphylococcus aureus (MRSA) is a significant and prevalent pathogen that poses a major challenge in healthcare environments. In light of the growing threat posed by multidrug-resistant organisms like MRSA, there is an urgent need for alternative therapeutic strategies. One promising avenue of research involves the use of antimicrobial peptides (AMPs). These naturally occurring molecules, which are part of the innate immune response in many organisms, have garnered attention for their ability to combat a wide range of pathogens.
Ferroptosis as a Therapeutic Target in Neurodegenerative Diseases: Exploring the Mechanisms and Potential of Treating Alzheimer's Disease and Parkinson's Disease
Amidst the rising global burden of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, there is an urgent need for novel therapeutic strategies to combat these debilitating conditions. These diseases are characterized by progressive neural dysfunction leading to cognitive impairments, for which current therapeutic strategies remain palliative at best. Recently, the discovery of ferroptosis, a novel cell death mode that is different from apoptosis and autophagy, has opened new avenues in the field of cognitive research. With in-depth research on ferroptosis, the clinical significance of iron homeostasis disorders and lipid peroxidation in the occurrence, development, and treatment of neurodegenerative diseases are gradually becoming apparent. This study aims to elucidate the roles of ferroptosis in the context of neurodegeneration and to explore its potential as a therapeutic target. By unraveling the intricate relationship between iron homeostasis disorders, oxidative damage, and lipid metabolism disturbances in these diseases, new intervention targets are revealed. It offers a new dimension to the management of neurocognitive impairments in Alzheimer's and Parkinson's diseases. The implications of these findings extend beyond just Alzheimer's and Parkinson's diseases. They also have relevance with other neurological conditions characterized by oxidative stress and iron dysregulation. This review contributes to increased knowledge of ferroptosis and provides a foundational understanding that could lead to the development of innovative therapeutic strategies. Ultimately, it may alleviate the development of neurodegenerative diseases and improve cognitive function by preventing ferroptosis, which has not only academic significance but also potential clinical significance.
Exploring the Therapeutic Potential of Noncoding RNAs in Alzheimer's Disease
Despite significant research efforts, Alzheimer's disease (AD), the primary cause of dementia in older adults worldwide, remains a neurological challenge for which there are currently no effective therapies. There are substantial financial, medical, and personal costs associated with this condition.Important pathological features of AD include hyperphosphorylated microtubule-associated protein Tau, the formation of amyloid β (Aβ) peptides from amyloid precursor protein (APP), and continuous inflammation that ultimately results in neuronal death. Important histological markers of AD, amyloid plaques, and neurofibrillary tangles are created when Aβ and hyperphosphorylated Tau build-up. Nevertheless, a thorough knowledge of the molecular players in AD pathophysiology is still elusive. Recent studies have shown how noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in a variety of diseases, including AD. There is increasing evidence to support the involvement of these ncRNAs in the genesis and progression of AD, making them promising as biomarkers and therapeutic targets. As a result, therapeutic approaches that target regulatory ncRNAs are becoming more popular as potential means of preventing the progression of AD. This review explores the posttranscriptional relationships between ncRNAs and the main AD pathways, highlighting the potential of ncRNAs to advance AD treatment. In AD, ncRNAs, especially miRNAs, change expression and present potential targets for therapy. MiR-346 raises Aβ through APP messenger Ribonucleic Acid (mRNA), whereas miR-107 may decrease Aβ by targeting beta-site amyloid precursor protein cleaving enzyme 1 (BACE1). They are promising early AD biomarkers due to their stability in cerebrospinal fluid (CSF) and blood. Furthermore, additional research is necessary to determine the role that RNA fragments present in AD-related protein deposits play in AD pathogenesis.
Honeybee Venom: A Potential Source of Anticancer Components
Cancer is a deadly disease that has claimed millions of lives worldwide. Traditional cancer treatments, such as chemotherapy and radiation, have been used for many years but have become less favored due to drug resistance, lack of tumor selectivity, high costs, and various side effects, such as fatigue and hair loss. Many studies have reported that animal venoms, such as those from snakes, scorpions, and bees, contain bioactive peptides that can be synthesized into anti-- cancer peptides (ACPs), which offer a potential alternative to traditional cancer therapies. Apitherapy is an area of growing interest for the development of new cancer treatments using bee venom, which is a complex mixture of biologically active peptides, enzymes, bioactive amines, and nonpeptide components that have been found to have anti-cancer properties. By leveraging these bioactive peptides, researchers could develop ACPs that are more targeted towards cancer cells, reducing the risk of adverse side effects and improving patient outcomes. The use of bee venom components in targeting cancer could provide a more selective, effective, and affordable approach to cancer therapy. While further research is needed, the potential benefits of using bee venom components in cancer therapy are significant and could help improve the lives of cancer patients worldwide. This study aims to review the components of bee venom as potential cancer treatments.
Comparative Analysis of IMT-P8 and LDP12 Cell-Penetrating Peptides in Increasing Immunostimulatory Properties of HIV-1 Nef-MPER-V3 Antigen
There have been great efforts in vaccine design against HIV-1 since 1981. Various approaches have been investigated, including optimized delivery systems and effective adjuvants to enhance the efficacy of selective antigen targets. In this study, we evaluated the efficiency of IMT-P8 and LDP12 cell penetrating peptides in eliciting immune responses against HIV-1 Nef-MPER-V3 fusion protein as an antigen candidate. Moreover, the potency of HP91 and HSP27 was compared as an adjuvant in female BALB/c mice through different regimens.
Aloperine Attenuates UVB-induced Damage in Skin Fibroblasts via Activating TFE3/Beclin-1-Mediated Autophagy
Aloperine (ALO) is an important active ingredient in the traditional Chinese medicinal plant Sophora alopecuroides L and has a significant autophagy-stimulating effect. The effect of ALO on cytotoxicity caused by UVB radiation in skin fibroblasts and the potential mechanism remains unclear.
Recent Trends in Development of Novel Therapeutics for Modulation of 14-3-3 Protein-Protein Interactions in Diseases
14-3-3s constitute a group of proteins belonging to the phosphoserine/phosphothreonine family that are involved in the regulation of several physiological pathways by interacting with several client proteins. All the eukaryotic cells are known to possess 14-3-3 isoforms. In addition, 14-3-3s isolated from different eukaryotic cells share high sequence homology with each other. Seven isoforms (β, γ, ε, η, ζ, σ, and τ/θ) have been yet identified in mammals. These proteins participate in several physiological processes by either stimulating or interfering with the enzymatic activities of binding partners. These proteins take part in several human diseases upon dysregulation which include cancer and neurodegenerative disorders. Recently, a number of evidences suggest that the interaction of 14-3-3s with either oncogenic or pro-apoptotic proteins can lead to cancer development in animals. In the case of neurodegenerative disorders, 14-3-3s interact with Lewy bodies and neurofibrillary tangles in Parkinson's and Alzheimer's diseases, respectively. The current review focuses on strategies to regulate 14-3-3s' proteins in diseases. Potential strategies to regulate 14-3-3 interactions in disease conditions include the use of small interfering RNAs (siRNA), microRNA (miRNA), and modifications of 14-3-3s or their client proteins. In addition, some peptides or chemicals can also serve as potential inhibitors of 14-3-3. However, optimization of these therapeutic strategies is required for their practical implementations.
Corrigendum to: Neuropeptide Network of Polycystic Ovary Syndrome - A Review
An error was found in the affiliations of the author in the article titled 'Neuropeptide Network of Polycystic Ovary Syndrome - A Review'', published in Protein and Peptide Letters, 2024, 31(9), 667-680 [1]. Details of the error and a correction are provided here. Original: *Address correspondence Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India; E-mail: drgsathyanarayanan@gmail.com Corrected: *Address correspondence to this author at the Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India; E-mail: drgsathyanarayanan@gmail.com We regret the error and apologize to readers. The original article can be found online at: http://dx.doi.org/10.2174/0109298665309949240822105900 PMID: 39313871.
Corrigendum to: Investigation of the Expression and Regulation of SCG5 in the Context of the Chromogranin-Secretogranin Family in Malignant Tumors
An error was found in the affiliations of the author in the article titled 'Investigation of the Expression and Regulation of SCG5 in the Context of the Chromogranin-Secretogranin Family in Malignant Tumors'', published in Protein and Peptide Letters, 2024, 31(9), 657-666 [1]. Details of the error and a correction are provided here. Original: *Address correspondence to these authors at the Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China; E-mail: jxsongycsy@163.com (J.S.) Corrected: *Address correspondence to these authors at the Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China; E-mail: jxsongycsy@163.com (J.S.); Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China; E-mail: ycsy161317@163.com (X.L.). We regret the error and apologize to readers. The original article can be found online at: http://dx.doi.org/10.2174/0109298665325956240819064853 PMID: 39219421.