JOURNAL OF SURFACTANTS AND DETERGENTS

Assessment of antimicrobial activity of melittin encapsulated in bicontinuous microemulsions prepared using renewable oils
Oehler MA, Hayes DG, D'Souza DH, Senanayake M, Gurumoorthy V, Pingali SV, O'Neill HM, Bras W and Urban VS
The objective of this study is to demonstrate that melittin, a well-studied antimicrobial peptide (AMP), can be solubilized in an active form in bicontinuous microemulsions (BMEs) that employ biocompatible oils. The systems investigated consisted of Winsor-III and -IV BME phases composed of Water/Aerosol-OT (AOT)/Polysorbate 85/isopropyl myristate and a Winsor-IV BME employing Polysorbate 80 and limonene. We found that melittin resided in an α-helix-rich configuration and was in an apolar environment for the AOT/Polysorbate 85 Winsor-III system, suggesting that melittin interacted with the surfactant monolayer and was in an active conformation. An apolar environment was also detected for melittin in the two Winsor-IV systems, but to a lesser extent than the Winsor-III system. Small-angle X-ray scattering analysis indicated that melittin at a concentration of 1.0 g/L in the aqueous subphase of the Winsor-IV systems led to the greatest impact on the BME structure (e.g., decrease of quasi-periodic repeat distance and correlation length and induction of interfacial fluidity). The antimicrobial activity of the Polysorbate 80 Winsor-IV system was evaluated against several bacteria prominent in chronic wounds and surgical site infections (SSIs). Melittin-free BMEs inhibited the growth of all tested bacteria due to its oil, limonene, while the inclusion of 1.0 g/L of melittin in the BMEs enhanced the activity against several bacteria. A further increase of melittin concentration in the BMEs had no further enhancement. These results demonstrate the potential utility of BMEs as a delivery platform for AMPs and other hydrophilic and lipophilic drugs to inhibit antibiotic-resistant microorganisms in chronic wounds and SSIs.
Self-assembled Trehalose Amphiphiles as Molecular Gels: A Unique Formulation to Wax-free Cosmetics
Tsupko P, Sagiri SS, Samateh M, Satapathy S and John G
Trehalose has been used as an emollient and antioxidant in cosmetics. However, we aimed to explore trehalose amphiphiles as oil structuring agents for the preparation of gel-based lip balms as part of wax-free cosmetics. This article describes the synthesis of trehalose fatty acyl amphiphiles and their corresponding oleogel-based lip balms. Trehalose dialkanoates were synthesized by esterifying the two primary hydroxyls of trehalose with fatty acids (C4-C12) using a facile, regioselective lipase catalysis. The gelation potential of as-synthesized amphiphiles was evaluated in organic solvents and vegetable oils. Stable oleogels were subjected to X-ray diffraction (XRD), thermal (DSC), and rheological studies and further used for the preparation of lip balms. Trehalose dioctanoate (Tr8), trehalose didecanoate (Tr10) were found to be super gelators as their minimum gelation concentration is ≤ 0.2 wt%. XRD studies revealed their hexagonal columnar molecular packing while forming the fibrillar networks. Rheometry proved that the fatty acyl chain length of amphiphiles can influence the strength and flow properties of oleogels. Further rheometry (at 25 °C, 37 °C, and 50 °C) and DSC studies have validated that Tr8- and Tr10-based oleogels are stable for commercial applications. Tr8- and Tr10-based olive oil oleogels were used for the preparation of lip balms. The preliminary results suggested that the cumulative effect of trehalose's emolliency and vegetable oil gelling nature can be achieved with trehalose amphiphiles, specifically, Tr8 and Tr10. This study has also demonstrated that Tr8- and Tr10-based lip balms can be used as an alternative to beeswax and plant wax lip balms, indicating their huge potential to succeed as a new paradigm to formulate wax-free cosmetics.
Biodegradability and Toxicity of Cellobiosides and Melibiosides
Hogan DE, Tian F, Malm SW, Kegel LL, Szabo LZ, Hunjan AS, Pemberton JE, Klimecki WT, Polt R and Maier RM
In 2014, almost 16 million tons of surfactants were used globally for cleaning and industrial applications. As a result, massive quantities disperse into environmental compartments every day. There is great market interest in developing highly biodegradable, less-toxic, and renewable alternatives to currently used petroleum-based surfactants. Glycolipid surfactants, composed of a sugar head-group and lipid tail, are effective surfactants and emulsifiers with a high tolerance to electrolytes and are easily tailored to address specific needs. The green synthesis and surfactant characteristics of a suite of cellobiosides and melibiosides were recently described. The biodegradability and toxicity of 1°-alkyl-O-cellobiosides, 2°-alkyl-O-cellobiosides, and 1°-alkyl-O-melibiosides with straight-chain alkyl tails of 8, 10, and 12 are reported in this study. Biodegradability was assessed by quantifying mineralization (CO evolution). All of the glycosides were inherently biodegradable and most were readily biodegradable according to OECD and EPA definitions. The Microtox acute toxicity assay showed both chain length and head group had significant effects on toxicity, but most of the molecules were practically non-toxic according to EPA definitions with EC values > 100 mg L. Cytotoxicity to human lung (H1299) and keratinocyte cell lines (HaCaT) was measured by xCELLigence and MTS assays. Cytotoxicity values were comparable to similar glycosides previously reported. IC values were determined but, in general, exceeded surfactant concentrations that are found in the environment. These data demonstrate the promising nature of these molecules as green alternatives to petrochemical surfactants.
Surfactants as Antimicrobials: A Brief Overview of Microbial Interfacial Chemistry and Surfactant Antimicrobial Activity
Falk NA
In this brief overview of a large and complex subject, as presented at the 2018 Surfactants in Solution conference, the need for, and impact of, hard surface antimicrobial products is demonstrated. The composition of the interfaces of three common classes of pathological microbes, bacteria, viruses, and fungi, is discussed so that surfactant and cleaning product development scientists better understand their interfacial characteristics. Studies of antimicrobial efficacy from the four major classes of surfactants (cationic, anionic, amphoteric, and nonionic) are shown. The need for preservatives in surfactants is elucidated. The regulatory aspects of antimicrobials in cleaning products to make antimicrobial claims are stressed.
Nuclear Magnetic Resonance Investigation of the Effect of pH on Micelle Formation by the Amino Acid-Based Surfactant Undecyl l-Phenylalaninate
Rothbauer GA, Rutter EA, Reuter-Seng C, Vera S, Billiot EJ, Fang Y, Billiot FH and Morris KF
Micelle formation by the anionic amino acid-based surfactant undecyl l-phenylalaninate (und-Phe) was investigated as a function of pH in solutions containing either Na, l-arginine, l-lysine, or l-ornithine counterions. In each mixture, the surfactant's critical micelle concentration (CMC) was the lowest at low pH and increased as solutions became more basic. Below pH 9, surfactant solutions containing l-arginine and l-lysine had lower CMC than the corresponding solutions with Na counterions. Nuclear magnetic resonance (NMR) diffusometry and dynamic light scattering studies revealed that und-Phe micelles with Na counterions had hydrodynamic radii of approximately 15 Å throughout the investigated pH range. Furthermore, l-arginine, l-lysine, and l-ornithine were found to bind most strongly to the micelles below pH 9 when the counterions were cationic. Above pH 9, the counterions became zwitterionic and dissociated from the micelle surface. In und-Phe/l-arginine solution, counterion dissociation was accompanied by a decrease in the hydrodynamic radius of the micelle. However, in experiments with l-lysine and l-ornithine, micelle radii remained the same at low pH when counterions were bound and at high pH when they were not. This result suggested that l-arginine is attached perpendicular to the micelle surface through its guanidinium functional group with the remainder of the molecule extending into solution. Contrastingly, l-lysine and l-ornithine likely bind parallel to the micelle surface with their two amine functional groups interacting with different surfactant monomers. This model was consistent with the results from two-dimensional ROESY (rotating frame Overhauser enhancement spectroscopy) NMR experiments. Two-dimensional NMR also showed that in und-Phe micelles, the aromatic rings on the phenylalanine headgroups were rotated toward the hydrocarbon core of micelle.
Comparison of Oleo- Petro-Sourcing of Fatty Alcohols via Cradle-to-Gate Life Cycle Assessment
Shah J, Arslan E, Cirucci J, O'Brien J and Moss D
Alcohol ethoxylates surfactants are produced via ethoxylation of fatty alcohol (FA) with ethylene oxide. The source of FA could be either palm kernel oil (PKO) or petrochemicals. The study aimed to compare the potential environmental impacts for PKO-derived FA (PKO-FA) and petrochemicals-derived FA (petro-FA). Cradle-to-gate life cycle assessment has been performed for this purpose because it enables understanding of the impacts across the life cycle and impact categories. The results show that petro-FA has overall lower average greenhouse gas (GHG) emissions (~2.97 kg COe) compared to PKO-FA (~5.27 kg COe). (1) The practices in land use change for palm plantations, (2) end-of-life treatment for palm oil mill wastewater effluent and (3) end-of-life treatment for empty fruit bunches are the three determining factors for the environmental impacts of PKO-FA. For petro-FA, -olefin production, ethylene production and thermal energy production are the main factors. We found the judicious decisions on land use change, effluent treatment and solid waste treatment are key to making PKO-FA environmentally sustainable. The sensitivity results show the broad distribution for PKO-FA due to varying practices in palm cultivation. PKO-FA has higher impacts on average for 12 out of 18 impact categories evaluated. For the base case, when accounted for uncertainty and sensitivity analyses results, the study finds that marine eutrophication, agricultural land occupation, natural land occupation, fossil depletion, particulate matter formation, and water depletion are affected by the sourcing decision. The sourcing of FA involves trade-offs and depends on the specific practices through the PKO life cycle from an environmental impact perspective.
Synthesis, Surface and Antimicrobial Activity of Piperidine-Based Sulfobetaines
Wieczorek D, Dobrowolski A, Staszak K, Kwaśniewska D and Dubyk P
A new method for the preparation of new heterocyclic amine surfactants based on sulfobetaines is proposed. Interfacial activities of the surfactants obtained in aqueous solution were studied by surface tension measurements. The critical micelle concentration, surface excess concentration, minimum area per surfactant molecule, and standard Gibbs energy of adsorption were determined. The adsorption properties of these compounds depend significantly on the alkyl chain length. Alkyl chain length also affects biological properties of the new surfactants, determining the minimum inhibitory concentration and size of inhibited growth zone. The compounds have high antimicrobial activity.
Statistical Analysis of Optimal Ultrasound Emulsification Parameters in Thistle-Oil Nanoemulsions
Miastkowska MA, Banach M, Pulit-Prociak J, Sikora ES, Głogowska A and Zielina M
Thistle oil (INCI: seed oil) is known as an anti-oxidant, moisturizing and skin regenerating cosmetic raw material. Nanoemulsions are a new form of cosmetic product showing very good user properties (ease of spreading over the skin with no greasy feeling). Moreover, due to their structure, they can also transport both hydrophilic and hydrophobic active substances to the skin. The aim of this work was the preparation and characterization of nanoemulsions, based on thistle oil. The non-ionic surfactants polysorbate 80 (PEG-20 sorbitan monooleate), decyl glucoside, and a polyglyceryl-4 ester blend were applied to stabilize the nanosystems. All formulations were obtained by a high energy method, using an ultrasonic device (Labsonic U, an ultrasound homogenizer). Variations in the emulsification parameters were tested, including surfactants concentration, pre-emulsification time, ultrasound power and sonication time. On the basis of statistical analysis (experimental design, cluster analysis, classification and regression trees) the best emulsification process parameters were determined. In order to verify the results of statistical analysis, once more an experimental study was conducted. The results obtained confirmed that statistical analysis can be a useful method in determining the conditions for obtaining stable nanoemulsions with desired properties. Formulations obtained with the use of Silybum marianum seed oil were characterized by long-term stability, a low polydispersity index, low viscosity and an average droplet size less than 200 nm.
Adsorption and Aggregation Activity of Sodium Dodecyl Sulfate and Rhamnolipid Mixture
Mańko D, Zdziennicka A and Jańczuk B
Measurements of the surface tension, density and viscosity of sodium dodecyl sulfate (SDS) and rhamnolipid (RL) mixtures were carried out in aqueous solution. From the obtained results, composition of mixed surface layer at the water-air interface, mixed micelles, parameter of intermolecular interactions, activity of SDS and RL in the surface layer and micelles, Gibbs standard free energy of adsorption and micellization as well as Gibbs free energy of SDS and RL mixing in the surface layer and micelles were established. These parameters were discussed in the light of independent adsorption of SDS and RL and the size of their molecules as well as the area in contact with water molecules. A correlation between the number of water molecules in contact with those of SDS and RL and standard free energy of adsorption as well as micellization of these surfactants was observed. A correlation between the apparent and partial molar volumes of RL and SDS in their mixture and size of surfactant molecules as well as the average distance between molecules was also found. The parameter of intermolecular interactions indicates that there is a synergetic effect in the reduction of water surface tension and micelle formation.
Itaconic Acid Based Surfactants: I. Synthesis and Characterization of Sodium -Octyl Sulfoitaconate Diester Anionic Surfactant
Xu J, Cao F, Li T, Zhang S, Gao C and Wu Y
A novel itaconate-based surfactant, namely sodium -octyl sulfoitaconate diester (SOSID), has been synthesized from itaconic acid (IA) and -octanol by sulfonation and esterification reaction processes. The effects of reaction temperature, reaction time, molar ratios of -octanol to IA and the catalyst dosage on the esterification were investigated. The chemical structure of the surfactants SOSID was characterized by means of LC-MS and confirmed by FT-IR and H NMR spectroscopy. The surface tension and the critical micelle concentration (CMC) were determined as 25.02 mN/m and 4.0 × 10 mol/L by using surface tensiometer at 20 °C. Further investigations showed that SOSID possess excellent wetting, emulsifying and lime soap dispersing properties.
Benchmarking the Self-Assembly of Surfactin Biosurfactant at the Liquid-Air Interface to those of Synthetic Surfactants
Onaizi SA, Nasser MS and Al-Lagtah NM
The adsorption of surfactin, a lipopeptide biosurfactant, at the liquid-air interface has been investigated in this work. The maximum adsorption density and the nature and the extent of lateral interaction between the adsorbed surfactin molecules at the interface were estimated from surface tension data using the Frumkin model. The quantitative information obtained using the Frumkin model was also compared to those obtained using the Gibbs equation and the Langmuir-Szyszkowski model. Error analysis showed a better agreement between the experimental and the calculated values using the Frumkin model relative to the other two models. The adsorption of surfactin at the liquid-air interface was also compared to those of synthetic anionic, sodium dodecylbenzenesulphonate (SDBS), and nonionic, octaethylene glycol monotetradecyl ether (CE), surfactants. It has been estimated that the area occupied by a surfactin molecule at the interface is about 3- and 2.5-fold higher than those occupied by SDBS and CE molecules, respectively. The interaction between the adsorbed molecules of the anionic biosurfactant (surfactin) was estimated to be attractive, unlike the mild repulsive interaction between the adsorbed SDBS molecules.
Application of Micellar Extraction for Isolation of Famotidine from Aqueous Samples Prior to its Chromatographic Determination
Kiszkiel-Taudul I, Starczewska B, Karpińska J and Kasabuła M
Micellar extraction was applied to isolate famotidine from aqueous samples. This drug is an H receptor antagonist used for the treatment of stomach diseases. The process was performed with a mixture of anionic sodium dodecylsulfate and nonionic Triton X-114 surfactants. The effect of different parameters on the efficiency of the micellar extraction such as electrolyte and surfactant concentration, pH of sample, temperature, shaking and centrifugation time was investigated. The influence of foreign substances on a studied process was tested. The elaborated procedure was applied for HPLC-UV determination of famotidine in natural water samples. The calibration graph was recorded in the range 1.35-37.12 μg mL of the studied compound. The repeatability of the method was equal to 7.4%. The limit of detection and quantification values for the determination of famotidine by using the proposed method amounted to 0.40 and 1.25 μg mL, respectively.
Determination of Dodecanol and Short-Chained Ethoxylated Dodecanols by LC-MS/MS (with Electrospray Ionization) After Their Derivatization (with Phenyl Isocyanate)
Zembrzuska J
This report describes the application of LC-MS/MS for the separation of dodecanol (COH) and homogenous fatty alcohols ethoxylated (AE) containing a dodecyl moiety and 1-9 ethoxy groups. These ethoxylates and free alcohol were derivatized for LC-MS/MS analysis with phenyl isocyanate (PIC). The derivatives of analytes with PIC were separated using a C18 column. Gradient elution with a mixture of ethyl acetate and acetonitrile (5 mM) was employed. The described determination method is characterized by low detection limits (range from 0.005 µg L for: COH, CEO to 1 µg L for CEO) and quantification limits (range from 0.01 µg L for: CEO to 2 µg L for CEO). The developed and validated method was used in combination with liquid-liquid extraction (using ethyl acetate) in order to identify and quantitatively determine the COH and CEO present in environmental samples collected from Warta river water in Poznan.
Selective Synthesis of Polyoxyethylene-Polyoxypropylene Block Copolymer (Poloxamer) Fatty Acid Monoesters Over Homogeneous Organotin Catalyst
Nowicki J, Woch J, Mościpan M, Robaszkiewicz A, Grabowski R, Semeniuk I and Erfurt K
The synthesis of selected polyoxyethylene-polyoxypropylene block copolymer (poloxamer) fatty acid monoesters is presented. Organotin homogeneous catalyst Sn (2-ethylhexanoate) effectively catalyzed the esterification reaction of (EO)-(PO)-(EO) block copolymer (poloxamer) with fatty acids. The reaction proceeded in high yield and high selectivity to monoesters. Content of diesters in final products was below 1 wt%. The new protocol opened up a high yield and high selective method for the synthesis of poloxamer fatty acid monoesters. These products are potentially interesting for industrial applications, e.g. in lubricants, cosmetics and, in particular, as potential emulsifying agents compatible with hydrocarbon bases, such as paraffin.
Improvement in the Safety of Use of Hand Dishwashing Liquids Through the Addition of Hydrophobic Plant Extracts
Wasilewski T, Seweryn A and Krajewski M
We investigated the effect of hydrophobic extract concentration on the safety of using hand dishwashing liquids (HDL). A series of formulations was prepared, differing in the concentration of the hydrophobic chamomile extract obtained in supercritical CO conditions (from 0 to 0.7 %). We found that an increase in the concentration of the extract led to a decrease in the zein number, and reduced changes in the pH level of bovine serum albumin solution (i.e., two parameters determining the irritant activity of the formulations). It was also found that the additives reduced transepidermal water loss and improved the skin hydration level. Based on the findings of the study, a mechanism has been proposed, according to which hydrophobic plant extracts form aggregates in the volume phase of the washing bath. The surface of the aggregates is the adsorption area for surfactant monomers responsible for the irritant effect. Increasing the addition of the extract was shown to reduce the negative impact of the formulations on the skin of the hands, thus contributing to a greater safety of use of HDL.
Elucidation of Softening Mechanism in Rinse-Cycle Fabric Softeners. Part 2: Uneven Adsorption-The Key Phenomenon to the Effect of Fabric Softeners
Igarashi T, Nakamura K, Hoshi M, Hara T, Kojima H, Itou M, Ikeda R and Okamoto Y
We investigated the actual factor determining the softening effect of a fabric softener. The adsorption area of the softener on model cotton cloths and yarns was identified using bromophenol blue. There was almost no softener at the cross-points of the yarns in the cloth samples or in the inner part of the yarns. The softening performance was better when there was less softener at the cross-points of the yarns than when the yarns were evenly covered by the softener. Thus we conclude that the presence of softener at the cross-points of yarns is not a vital factor in the softening effect. In addition, more softener was found on the outer part of the yarn than the inner part, indicating gradation in the adsorption pattern of the softener. Thus, we propose that more softener is adsorbed on the exposed part of the yarn in a cloth, and the formation of a hydrogen-bonding network containing bound water is inhibited, thus softening the outer part of the yarn. However, the presence of a small amount of softener in the inner part of the yarn preserves the hydrogen-bonding network. Favorable elasticity, or bounce, of the yarns and cloth is realized when an appropriate amount of softener is used. Excess softener would reach the inner part of the yarn, reducing the diameter of the core part of the yarn, making the cloth appear wilted.
Alkyl Xylosides: Physico-Chemical Properties and Influence on Environmental Bacteria Cells
Smułek W, Kaczorek E and Hricovíniová Z
A group of four selected non-ionic surfactants based on carbohydrates, namely octyl d-xyloside (CX), nonyl d-xyloside (CX), decyl d-xyloside (CX) and dodecyl d-xyloside (CX), have been investigated to accomplish a better understanding of their physico-chemical properties as well as biological activities. The surface-active properties, such as critical micelle concentration (CMC), emulsion and foam stability, the impact of the compounds on cell surface hydrophobicity and cell membrane permeability together with their toxicity on the selected bacterial strains have been determined as well. The studied group of surfactants showed high surface-active properties allowing a decrease in the surface tension to values below 25 mN m for dodecyl d-xyloside at the CMC. The investigated compounds did not have any toxic influence on two bacterial strains at concentrations below 25 mg L. The studied long-chain alkyl xylosides influenced both the cell inner membrane permeability and the cell surface hydrophobicity. Furthermore, the alkyl chain length, as well as the surfactant concentration, had a significant impact on the modifications of the cell surface properties. The tested non-ionic surfactants exhibited strong surface-active properties accompanied by the significant influence on growth and properties of bacteria cells.
Perfectly Wetting Mixtures of Surfactants from Renewable Resources: The Interaction and Synergistic Effects on Adsorption and Micellization
Szumała P and Mówińska A
This paper presents a study of the surface properties of mixtures of surfactants originating from renewable sources, i.e., alkylpolyglucoside (APG), ethoxylated fatty alcohol (AE), and sodium soap (Na soap). The main objective was to optimize the surfactant ratio which produces the highest wetting properties during the analysis of the solution of the individual surfactants, two- and three-component mixtures, and at different pH values. The results showed the existence of a synergistic effect in lowering the interfacial tension, critical micelle concentration and the formation of mixed micelles in selected solutions. We found that best wetting properties were measured for the binary AE:APG mixtures. It has been demonstrated that slightly lower contact angles values were observed on Teflon and glass surfaces for the AE:APG:soap mixtures but the results were obtained for higher concentration of the components. In addition, all studied solutions have very good surface properties in acidic, basic and neural media. However, the AE:soap (molar ratio of 1:2), AE:APG (2:1) and AE:APG:soap (1:1:1) compositions improved their wetting power at pH 7 on the aluminium and glass surfaces, as compared to solutions at other pH values tested (selected Θ values close to zero-perfectly wetting liquids). All described effects detected would allow less surfactant to be used to achieve the maximum capacity of washing, wetting or solubilizing while minimizing costs and demonstrating environmental care.
Surface Tension and Adsorption Studies by Drop Profile Analysis Tensiometry
Kairaliyeva T, Aksenenko EV, Mucic N, Makievski AV, Fainerman VB and Miller R
Surface tension and dilational viscoelasticity of solutions of various surfactants measured with bubble and drop profile analysis tensiometry are discussed. The study also includes experiments on the co-adsorption of surfactant molecules from a solution drop and alkane molecules from saturated alkane vapor phase. Using experimental data for 12 surfactants with different surface activities, it is shown that depletion due to adsorption of surfactant from the drop bulk can be significant. An algorithm is proposed quantitatively to take into consideration the depletion effect which is required for a correct description of the co-adsorption of alkanes on the solution drop surface and the correct analysis of experimental dynamic surface tension data to determine the adsorption mechanism. Bubble and drop profile analysis tensiometry is also the method of choice for measuring the dilational viscoelasticity of the adsorbed interfacial layer. The same elasticity moduli are obtained with the bubble and drop method only when the equilibrium surface pressures are sufficiently small (Π < 15 mN m). When the surface pressure for a surfactant solution is larger than this value, the viscoelasticity moduli determined from drop profile experiments become significantly larger than those obtained from bubble profile measurements.
A Linear Diffusion Model of Adsorption Kinetics at Fluid/Fluid Interfaces
Staszak M
The paper presents a new model for kinetically controlled adsorption at the fluid/fluid interface. The main purpose of the presented approach is to relate easy to estimate bulk surfactant concentration with Gibbs surface excess. Two adsorption isotherms are involved in the new model development: Frumkin and Szyszkowski isotherms. Additionally the Johannsen time profile of concentration in the adsorption layer is assumed and estimated in the model derivation. The proposed approach assumes the near interface, adsorptive layer which is described based on Fick's transient diffusion law. The solution to the model contains the estimation of effective diffusivities with adsorptive layer thickness as well. The experimental results of toluene/water + sodium dodecyl sulfate are presented and used for model verification.
Synthesis and Surface Activity of Cationic Amino Acid-Based Surfactants in Aqueous Solution
Greber KE
I studied the possibility of using amino acid-based surfactants as emulsifiers at the same time as preservatives. Fourteen lipopeptides were synthesized employing a solid phase peptide synthesis procedure. All compounds were designed to be positively charged from +1 to +4 and acylated with fatty acid chain-palmitic and miristic. The surface activity of the obtained lipopeptides was tested using a semi-automatic tensiometer to calculate parameters describing the behavior of lipopeptides in the air/water interface. Such parameters as CMC, surface tension at the CMC point (), effectiveness (), and efficiency (pC20) were measured. Emulsifying properties of all lipopeptides were also examined. The studies reveal that the surface active properties of synthesized compounds strongly depend on the length of alkyl chains as well as on the composition of amino acid polar heads. The critical micelle concentration decreases with increasing alkyl chain length of lipopeptides with the same polar head. The effectiveness and efficiency decrease when the number of amino acids in the polar head increases. All lipopeptides established a very weak emulsification power and created unstable water/Miglyol 812 and water/paraffin oil emulsions. Results suggest that lipopeptides cannot be used as emulsifiers; nonetheless, it is possible to use them as auxiliary surfactants with disinfectant properties in combination with more potent emulsifiers.