Non-invasive acoustic fabrication methods to enhance collagen hydrogel bioactivity
Much attention has focused recently on utilizing components of the extracellular matrix (ECM) as natural building blocks for a variety of tissue engineering applications and regenerative medicine therapies. Consequently, new fabrication methods are being sought to enable molecular control over the structural characteristics of ECM molecules in order to improve their biological function. Exposing soluble collagen to acoustic forces associated with ultrasound propagation produces localized variations in collagen microfiber organization that in turn, promote cell behaviors essential for tissue regeneration, including cell migration and matrix remodeling. In the present study, mechanisms by which ultrasound interacts with polymerizing collagen to produce functional changes in collagen microstructure were investigated. The rate of collagen polymerization was manipulated by adjusting the pH of collagen solutions and the temperature at which gels were polymerized. Results demonstrate that the phase transition of type I collagen from fluid to gel triggered a simultaneous increase in acoustic absorption. This phase transition of collagen involves the lateral growth of early-stage collagen microfibrils and importantly, corresponded to a defined period of time during which exposure to ultrasound introduced both structural and functional changes to the resultant collagen hydrogels. Together, these experiments isolated a critical window in the collagen fiber assembly process during which mechanical forces associated with ultrasound propagation are effective in producing structural changes that underlie the ability of acoustically-modified collagen hydrogels to stimulate cell migration. These results demonstrate that changes in material properties associated with collagen polymerization are a fundamental component of the mechanism by which acoustic forces modify collagen biomaterials to enhance biological function.
Enabling long term monitoring of dopamine using dimensionally stable ultrananocrystalline diamond microelectrodes
Chronic dopamine (DA) monitoring is a critical enabling technology to identify the neural basis of human behavior. Carbon fiber microelectrodes (CFM), the current gold standard electrode for fast scan cyclic voltammetry (FSCV), rapidly loses sensitivity due to surface fouling during chronic neural testing. Periodic voltage excursions at elevated anodic potentials regenerate fouled CFM surfaces but they also chemically degrade the CFM surfaces. Here, we compare the dimensional stability of 150 m boron-doped ultrananocrystalline diamond (BDUNCD) microelectrodes in 1X PBS during 'electrochemical cleaning' with a similar-sized CFM. Scanning electron microscopy and Raman spectroscopy confirm the exceptional dimensional stability of BDUNCD after 40 h of FSCV cycling (~8 million cycles). The fitting of electrochemical impedance spectroscopy data to an appropriate circuit model shows a 2x increase in charge transfer resistance and an additional RC element, which suggests oxidation of BDUNCD electrode surface. This could have likely increased the DA oxidation potential by ~34% to +308 mV. A 2x increase in BDUNCD grain capacitance and a negligible change in grain boundary impedance suggests regeneration of grains and the exposure of new grain boundaries, respectively. Overall, DA voltammogram signals were reduced by only ~20%. In contrast, the CFM is completely etched with a ~90% reduction in the DA signal using the same cleaning conditions. Thus, BDUNCD provides a robust electrode surface that is amenable to repeated and aggressive cleaning which could be used for chronic DA sensing.
Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles
Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ~60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ~3-fold higher silane can be used as efficient probes for biosensor applications.
Emerging investigators in materials science 2017-2018
Robust mold fabricated by femtosecond laser pulses for continuous thermal imprinting of superhydrophobic surfaces
Superhydrophobic surfaces rely on a large number of surface micro/nano structures to increase the roughness of a material. Producing such structures is possible through a multitude of relatively slow methods; however, economic and large scale production of superhydrophobic surfaces require using a fast process on a cheap substrate. Here, we used femtosecond laser processing to fabricate micro and nanostructures on tungsten carbide that we use as a mold to thermally imprint polypropylene sheets. The fabricated tungsten carbide mold was used to imprint more than twenty superhydrophobic polypropylene sheets before mold contamination reduces the surface contact angle below 150°.Using Toluene solution, the mold is subsequently capable of being cleaned of contamination from polypropylene residue and reused for further imprinting. Ninety thermoplastic imprints were conducted using a single tungsten carbide mold with only minimal structural degradation apparent on the micro/nano structured surface.
Magnetic order and competition with superconductivity in (Ho-Er)NiBC
The rare earth magnetic order in pure and doped (x = 0, 0.25, 0.50, 0.75, 1) single crystal samples was investigated using magnetization and neutron diffraction measurements. Superconducting quaternary borocarbides, where = Ho, Er , are magnetic intermetallic superconductors with the transition temperatures~10 K in which long range magnetic order develops in the same temperature range and competes with superconductivity. Depending on the rare earth composition the coupling between superconductivity and magnetism creates several phases, ranging from a near reentrant superconductor with a mixture of commensurate and incommensurate antiferromagnetism to an incommensurate antiferromagnetic spin modulation with a weak ferromagnetic component. All of these phases coexist with superconductivity. RKKY magnetic interactions are used to describe the magnetic orders in the pure compounds. However, the doping of Er on Ho sites which have two strong magnetic moments with two different easy directions creates new and complicated magnetic modulations with possible local disorder effects. One fascinating effect is the development of an induced magnetic state resembling the pure and doped CuO cuprate with R = Nd and Pr.