Current Topics in Membranes

How has the evolution of our understanding of the compartmentalization of sphingolipid biosynthesis over the past 30 years altered our view of the evolution of the pathway?
Biran A, Dingjan T and Futerman AH
Sphingolipids are unique among cellular lipids inasmuch as their biosynthesis is compartmentalized between the endoplasmic reticulum (ER) and the Golgi apparatus. This compartmentalization was first recognized about thirty years ago, and the current review not only updates studies on the compartmentalization of sphingolipid biosynthesis, but also discusses the ramifications of this feature for our understanding of how the pathway could have evolved. Thus, we augment some of our recent studies by inclusion of two further molecular pathways that need to be considered when analyzing the evolutionary requirements for generation of sphingolipids, namely contact sites between the ER and the Golgi apparatus, and the mechanism(s) of vesicular transport between these two organelles. Along with evolution of the individual enzymes of the pathway, their subcellular localization, and the supply of essential metabolites via the anteome, it becomes apparent that current models to describe evolution of the sphingolipid biosynthetic pathway may need substantial refinement.
Endocytosis in malaria parasites: An ultrastructural perspective of membrane interplay in a unique infection model
Wendt C and Miranda K
Malaria remains a major global threat, representing a severe public health problem worldwide. Annually, it is responsible for a high rate of morbidity and mortality in many tropical developing countries where the disease is endemic. The causative agent of malaria, Plasmodium spp., exhibits a complex life cycle, alternating between an invertebrate vector, which transmits the disease, and the vertebrate host. The disease pathology observed in the vertebrate host is attributed to the asexual development of Plasmodium spp. inside the erythrocyte. Once inside the red blood cell, malaria parasites cause extensive changes in the host cell, increasing membrane rigidity and altering its normal discoid shape. Additionally, during their intraerythrocytic development, malaria parasites incorporate and degrade up to 70 % of host cell hemoglobin. This mechanism is essential for parasite development and represents an important drug target. Blocking the steps related to hemoglobin endocytosis or degradation impairs parasite development and can lead to its death. The ultrastructural analysis of hemoglobin endocytosis on Plasmodium spp. has been broadly explored along the years. However, it is only recently that the proteins involved in this process have started to emerge. Here, we will review the most important features related to hemoglobin endocytosis and catabolism on malaria parasites. A special focus will be given to the recent analysis obtained through 3D visualization approaches and to the molecules involved in these mechanisms.
Impact of coat protein on evolution of ilarviruses
Çelik A and Santosa AI
The genomic sequences attributed to the coat protein play a pivotal role in the evolutionary trajectory of plant viruses. The coat protein region, particularly scrutinized in the genus of Ilarvirus phylogroups, actively shapes the regional and host-specific dispersion. Within this chapter, assorted insights pertaining to the roles undertaken by coat proteins of frequently encountered Ilarviruses in their evolutionary processes are consolidated. Nonetheless, it is discerned that the availability of genomic data for RNA1 and RNA2 remains markedly limited, impeding the provision of lucid elucidations in this domain. Hence, to comprehensively delineate the evolution of Ilarviruses, a requisite exists for supplementary nucleotide sequence data, with a particular emphasis on taxa that have received lesser attention in research endeavors.
Lysosomal membrane contact sites: Integrative hubs for cellular communication and homeostasis
Bandyopadhyay S, Adebayo D, Obaseki E and Hariri H
Lysosomes are more than just cellular recycling bins; they play a crucial role in regulating key cellular functions. Proper lysosomal function is essential for growth pathway regulation, cell proliferation, and metabolic homeostasis. Impaired lysosomal function is associated with lipid storage disorders and neurodegenerative diseases. Lysosomes form extensive and dynamic close contacts with the membranes of other organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and lipid droplets. These membrane contacts sites (MCSs) are vital for many lysosomal functions. In this chapter, we will explore lysosomal MCSs focusing on the machinery that mediates these contacts, how they are regulated, and their functional implications on physiology and pathology.
Extracellular vesicles
Gonçalves MO, Di Iorio JF, Marin GV, Meneghetti P, Negreiros NGS and Torrecilhas AC
Cells, pathogens, and other systems release extracellular vesicles (EVs). The particles promote intercellular communication and contain proteins, lipids, RNA and DNA. Initially considered to be cellular waste in the twentieth century, EVs were becoming recognized for their function in biological communication and control. EVs are divided into many subtypes: exosomes, microvesicles, and apoptotic bodies. Exosomes form in the late endosome/multivesicular body and are released when the compartments fuse with the plasma membrane. Microvesicles are generated by direct budding of the plasma membrane, whereas apoptotic bodies are formed after cellular apoptosis. The new guideline for EVs that describes alternate nomenclature for EVs. The particles modulate the immune response by affecting both innate and adaptive immunity, and their specific the structure allows them to be used as biomarkers to diagnose a variety of diseases. EVs have a wide range of applications, for example, delivery systems for medications and genetic therapies because of their ability to convey specific cellular material. In anti-tumor therapy, EVs deliver therapeutic chemicals to tumor cells. The EVs promote transplant compatibility and reduce organ rejection. Host-parasite interactions, therapeutic and diagnostic for cancer, cardiovascular disease, cardiac tissue regeneration, and the treatment of neurological diseases such as Alzheimer's and Parkinson's. The study of EVs keeps on expanding, revealing new functions and beneficial options. EVs have the potential to change drug delivery, diagnostics, and specific therapeutics, creating a new frontier in biomedical.
Biogenesis of EVs in Trypanosomatids
De Lira Silva NS and Schenkman S
Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.
The elusive Na1.7: From pain to cancer
Banderali U, Moreno M and Martina M
Voltage-gated sodium channels (Na) are protein complexes that play fundamental roles in the transmission of signals in the nervous system, at the neuromuscular junction and in the heart. They are mainly present in excitable cells where they are responsible for triggering action potentials. Dysfunctions in Na ion conduction give rise to a wide range of conditions, including neurological disorders, hypertension, arrhythmia, pain and cancer. Na family 1 is composed of nine members, named numerically from 1 to 9. A Nax family also exists and is involved in body-fluid homeostasis. Of particular interest is Na1.7 which is highly expressed in the sensory neurons of the dorsal root ganglions, where it is involved in the propagation of pain sensation. Gain-of-function mutations in Na1.7 cause pathologies associated with increased pain sensitivity, while loss-of-function mutations cause reduced sensitivity to pain. The last decade has seen considerable effort in developing highly specific Na1.7 blockers as pain medications, nonetheless, sufficient efficacy has yet to be achieved. Evidence is now conclusively showing that Nas are also present in many types of cancer cells, where they are involved in cell migration and invasiveness. Na1.7 is anomalously expressed in endometrial, ovarian and lung cancers. Na1.7 is also involved in Chemotherapy Induced Peripheral Neuropathy (CIPN). We propose that the knowledge and tools developed to study the role of Na1.7 in pain can be exploited to develop novel cancer therapies. In this chapter, we illustrate the various aspects of Na1.7 function in pain, cancer and CIPN, and outline therapeutic approaches.
CLIC1 regulation of cancer stem cells in glioblastoma
Randhawa K and Jahani-Asl A
Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis. In glioblastoma (GB), CLIC1 facilitates the G1/S phase transition and tightly regulates glioma stem-like cells (GSCs), a rare population of self-renewing CSCs with central roles in tumour resistance to therapy and tumour recurrence. CLIC1 is found as either a monomeric soluble protein or as a non-covalent dimeric protein that can form an ion channel. The ratio of dimeric to monomeric protein is altered in GSCs and depends on the cell redox state. Elucidating the mechanisms underlying the alterations in CLIC1 expression and structural transitions will further our understanding of its role in GSC biology. This review will highlight the role of CLIC1 in GSCs and its significance in facilitating different hallmarks of cancer.
Extracellular vesicles as biomarkers in parasitic disease diagnosis
Barnadas-Carceller B, Del Portillo HA and Fernandez-Becerra C
Parasitic diseases constitute a major global health problem, affecting millions of people worldwide. Recent advances in the study of extracellular vesicles (EVs) have opened up new strategies for biomarker discovery in protozoan and helminth infections. Analyses of EVs in cultures and biological fluids have identified numerous potential biomarkers that could be useful for early and differential diagnosis, monitoring therapeutic responses, and the overall management and control of these diseases. Despite the potential of these biomarkers, several challenges must be addressed, including limited research, the need for standardized protocols, and the reproducibility of results across studies. In many parasitic infections, EVs have been obtained from various sample types, including plasma from human patients and mouse models, as well as cultures of the parasites at different stages. EVs were isolated by various methods and predominantly characterized through proteomic analysis or RNA sequencing to assess their cargo and identify potential biomarkers. These biomarker candidates were investigated and validated using different assays such as ELISA, Western Blot, and ROC curves. Overall, the use of EVs is considered a promising new diagnostic strategy for parasite infections, but further research with larger cohorts, standardized methods, and additional validation tests are essential for effective diagnosis and management of these diseases.
Exploring bacterial extracellular vesicles: Focus on WHO critical priority pathogens
Rocha Minarini LAD
Bacterial extracellular vesicles (EVs) are cell-derived particles with a phospholipidic bilayer structure and diameter ranging from 20 to 250 nm, comprising a varied of components, including bioactive proteins, lipids, DNA, RNA, and other metabolites. These EVs play an essential role in bacterial and host function and are recognized as essential keys in cell-to-cell communication and pathogenesis. Due to these characteristics and functions, EVs exhibit great potential for biomedical applications and are promising tools for the development of drug delivery systems and vaccines, as well as for use in disease diagnostics. An interesting focus of this review is on the clinical relevance of EVs, with a particular emphasis on two critical pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Insights into the outer membrane vesicles (OMVs) derived from these bacteria underscore their roles in antimicrobial resistance and pathogenicity. Additionally, the review explores OMV-based vaccine strategies as a promising means to mitigating these pathogens.
The role of extracellular vesicles in cancer
Perez Hurtado EC, Henao Agudelo JS, Foganholi da Silva RA, Viração TA and Fernandes CJDC
Extracellular vesicles (EVs), which include small EVs such as exosomes, play a critical role in intercellular communication and are produced by both cancer and non-cancer cells. Several studies have shown that cancer cells exploit various strategies to regulate the biogenesis, composition, and functions of EVs primarily to promote cancer progression. Given that exosomes originate from major sorting hubs at the limiting membrane of endosomes, they are central to a signaling network that connects external stimuli with intrinsic tumor cell features. Exosomes contain diverse repertoires of molecular cargos, such as proteins, lipids, and nucleic acids, which determine their heterogeneity and functional properties in cancer progression. Therefore, targeting exosome biogenesis will enhance our understanding of tumorigenesis and also promote the discovery of novel approaches for cancer therapy. In this chapter we summarize the machinery of exosome biogenesis and the local, distant, and systemic effects of exosomes released by cancer cells. Furthermore, we explore how these exosomes regulate the anti-tumor immune response and epigenetic mechanisms to sustain cancer progression and their implications in cancer prevention and treatment.
Extracellular vesicles and sleep deprivation
Novaes E Brito RR
Sleep is vital in preserving mental and physical well-being by aiding bodily recovery, strengthening the immune system, and regulating hormones. It enhances memory, concentration, and mood regulation, reducing stress and anxiety. Sleep deprivation, a common phenomenon affecting approximately 20% of adults, decreases performance, alertness, and health integrity. Furthermore, it triggers physiological changes, including increased stress hormone levels, leading to various disorders such as hyperglycemia and hypertension. Recent research explores the role of extracellular vesicles (EVs) in sleep-related conditions. EVs, released by cells, play vital roles in intercellular communication and biomarker potential. Studies indicate that sleep deprivation influences EV release, impacting cancer progression, endothelial inflammation, and thrombosis risk. Understanding these mechanisms offers insights into therapeutic interventions. Thus, multidisciplinary approaches are crucial to unraveling the complex interactions between sleep, EVs, and health, providing direction for effective prevention and treatment approaches for sleep disorders and related conditions.
Extracellular vesicles in neurodegenerative, mental, and other neurological disorders: Perspectives into mechanisms, biomarker potential, and therapeutic implications
Kajitani GS, Xavier G, Villena-Rueda BE, Karia BTR and Santoro ML
Extracellular vesicles (EVs) are produced, secreted, and targeted by most human cells, including cells that compose nervous system tissues. EVs carry several types of biomolecules, such as lipids, proteins and microRNA, and can function as signaling agents in physiological and pathological processes. In this chapter, we will focus on EVs and their cargo secreted by brain cells, especially neurons and glia, and how these aspects are affected in pathological conditions. The chapter covers neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, as well as several psychiatric disorders, namely schizophrenia, autism spectrum disorder and major depressive disorder. This chapter also addresses other types of neurological dysfunctions, epilepsy and traumatic brain injury. EVs can cross the blood brain barrier, and thus brain EVs may be detected in more accessible peripheral tissue, such as circulating blood. Alterations in EV composition and contents can therefore impart valuable clues into the molecular etiology of these disorders, and serve biomarkers regarding disease prevalence, progression and treatment. EVs can also be used to carry drugs and biomolecules into brain tissue, considered as a promising drug delivery agent for neurological diseases. Therefore, although this area of research is still in its early development, it offers great potential in further elucidating and in treating neurological disorders.
Extracellular vesicles: Methods for purification and characterization
Meneghetti P, Gonçalves MO, Marin GV, Di Iorio JF, Negreiros NGS and Torrecilhas AC
Extracellular vesicles (EVs) are membrane-bound particles released by cells that play a significant role in intercellular communication. They can be obtained from a variety of sources, including conditioned culture medium, blood and urine. In this chapter we detail the methods for EV isolation and characterization. Isolating and characterizing EVs is essential for understanding their functions in physiological and pathological processes. Advances in isolation and characterization techniques provide opportunities for deeper research into EV biology and its potential applications in diagnostics and therapeutics.
Receptor-mediated endocytosis in kidney cells during physiological and pathological conditions
Rodrigues MC, Oliveira LBF, Vieira MAR, Caruso-Neves C and Peruchetti DB
Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.
Extracellular vesicles in parasitic protozoa: Impact of Leishmania exosomes containing Leishmania RNA virus 1 (LRV1) on Leishmania infectivity and disease progression
Leroux M, Lafleur A, Villalba-Guerrero C, Beaulieu M, Lira AB and Olivier M
This chapter focuses on the interplay between Leishmania parasites and their host, particularly on Leishmania RNA virus (LRVs) and extracellular vesicles (EVs) in modulating host-pathogen interactions. Leishmania EVs have been shown to facilitate gene transfer, including drug-resistance genes, enhancing the parasites' survival and resistance to antileishmanial therapeutics. These EVs also play a significant role in host immune modulation by altering cytokine production in macrophages and promoting an anti-inflammatory environment that favours parasitic persistence. The presence of virulence factors such as GP63 within these EVs further underscores their role in the parasite's immunopathogenesis. Over the last few decades, LRVs have been established as drivers of the severity and persistence of leishmaniasis by exacerbating inflammatory responses and potentially influencing treatment outcomes. This chapter discusses the evolutionary origins and classification of these viruses, and explores their role in parasitic pathogenicity, highlighting their ubiquity across protozoan parasites and their impact on disease progression.
Involvement of extracellular vesicles in the interaction of hosts and Toxoplasma gondii
Vicentini LPP, Pereira-Chioccola VL and Fux B
Toxoplasma gondii, the causative agent of toxoplasmosis, is widely distributed. This protozoan parasite is one of the best adapted, being able to infect innumerous species of animals and different types of cells. This chapter reviews current literature on extracellular vesicles secreted by T. gondii and by its hosts. The topics describe the life cycle and transmission (1); toxoplasmosis epidemiology (2); laboratorial diagnosis approach (3); The T. gondii interaction with extracellular vesicles and miRNAs (4); and the perspectives on T. gondii infection. Each topic emphases the host immune responses to the parasite antigens and the interaction with the extracellular vesicles and miRNAs.
Voltage-gated sodium channels, sodium transport and progression of solid tumours
Malcolm JR, Sajjaboontawee N, Yerlikaya S, Plunkett-Jones C, Boxall PJ and Brackenbury WJ
Sodium (Na) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na transporters. In particular, the α subunits of voltage gated Na channels (VGSCs) raise intracellular Na concentration ([Na]) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.
Extracellular vesicles in malaria: Pathogenesis, diagnosis and therapy
Pinheiro AAS, Caruso-Neves C and Rocco PRM
Malaria is a life-threatening disease caused by parasites from the genus Plasmodium. Five species can cause malaria in humans, with Plasmodium vivax being the most common in many countries and Plasmodium falciparum having the highest lethality, which can lead to cerebral malaria. Extracellular vesicles (EVs) are in focus in malaria research to better understand pathogenesis, diagnosis, therapy, and prognosis. Malaria-causing parasites use EVs to transfer their molecules to host cells, a mechanism that significantly contributes to parasite survival and successful infection. EVs have thus emerged as an essential component of the immunopathological cascade of malaria, playing a pivotal role in disease progression and severity. This chapter discusses the epidemiology and pathogenesis of malaria and the role of EVs as new diagnostic and therapeutic tools, emphasizing their potential clinical significance.
Non-conducting functions of potassium channels in cancer and neurological disease
Sesti F, Bortolami A and Kathera-Ibarra EF
Cancer and neurodegenerative disease, albeit fundamental differences, share some common pathogenic mechanisms. Accordingly, both conditions are associated with aberrant cell proliferation and migration. Here, we review the causative role played by potassium (K) channels, a fundamental class of proteins, in cancer and neurodegenerative disease. The concept that emerges from the review of the literature is that K channels can promote the development and progression of cancerous and neurodegenerative pathologies by dysregulating cell proliferation and migration. K channels appear to control these cellular functions in ways that not necessarily depend on their conducting properties and that involve the ability to directly or indirectly engage growth and survival signaling pathways. As cancer and neurodegenerative disease represent global health concerns, identifying commonalities may help understand the molecular basis for those devastating conditions and may facilitate the design of new drugs or the repurposing of existing drugs.
Extracellular vesicles release from protozoa parasite and animal model
Vidal AS, Zauli RC, Batista WL and Xander P
Diseases caused by protozoan parasites, such as leishmaniasis, trypanosomiasis, and malaria, are highly complex and together continue to cause high annual morbidity and mortality. The search for new compounds in environmental biodiversity, repositioning known drugs, and developing vaccines using old and innovative technologies have been employed to discover vaccines and new and alternative treatments. Extracellular vesicles (EVs) can carry parasite antigens, creating a new possibility to develop an effective and affordable platform for treatment, vaccines, and drug delivery. Thus, the evaluation of EVs in animal models can and should be explored among the countless biomedical applications. Herein, we will address the concept of EVs, their acquisition and characterization in protozoan parasite models, and the primary studies using these vesicles in therapeutic applications.