Numerical simulation of the radiofrequency safety of 128-channel hd-EEG nets on a 29-month-old whole-body model in a 3 Tesla MRI
This study investigates the radiofrequency (RF) induced heating in a pediatric whole-body voxel model with a high-density electroencephalogram (hd-EEG) net during magnetic resonance imaging (MRI) at 3 Tesla. A total of three cases were studied: no net (NoNet), a resistive hd-EEG (NeoNet), and a copper (CuNet) net. The maximum values of specific absorption rate averaged over 10g-mass (10gSAR) in the head were calculated with the NeoNet was 12.51 W/kg and in the case of the NoNet was 12.40 W/kg. In contrast, the CuNet case was 17.04 W/Kg. Temperature simulations were conducted to determine the RF-induced heating without and with hd-EEG nets (NeoNet and CuNet) during an MRI scan using an age-corrected and thermoregulated perfusion for the child model. The results showed that the maximum temperature estimated in the child's head was 38.38 °C for the NoNet, 38.43 °C for the NeoNet, and 43.05 °C for the CuNet. In the case of NeoNet, the maximum temperature estimated in the child's head remained compliant with IEC 60601 for the MRI RF safety limit. However, the case of CuNet estimated to exceed the RF safety limit, which may require an appropriate cooling period or a hardware design to suppress the RF-induced heating.
Machine learning-based prediction of MRI-induced power absorption in the tissue in patients with simplified deep brain stimulation lead models
Interaction of an active electronic implant such as a deep brain stimulation (DBS) system and MRI RF fields can induce excessive tissue heating, limiting MRI accessibility. Efforts to quantify RF heating mostly rely on electromagnetic (EM) simulations to assess individualized specific absorption rate (SAR), but such simulations require extensive computational resources. Here, we investigate if a predictive model using machine learning (ML) can predict the local SAR in the tissue around tips of implanted leads from the distribution of the tangential component of the MRI incident electric field, E. A dataset of 260 unique patient-derived and artificial DBS lead trajectories was constructed, and the 1 g-averaged SAR, 1gSAR, at the lead-tip during 1.5 T MRI was determined by EM simulations. E values along each lead's trajectory and the simulated SAR values were used to train and test the ML algorithm. The resulting predictions of the ML algorithm indicated that the distribution of E could effectively predict 1gSAR at the DBS lead-tip (R = 0.82). Our results indicate that ML has the potential to provide a fast method for predicting MR-induced power absorption in the tissue around tips of implanted leads such as those in active electronic medical devices.
5 GHz Band LTE-LAA Signal Selection for Use as the Unintended Signal in ANSI C63.27 Wireless Coexistence Testing
This article details the experimental work conducted at the Electromagnetic Compatibility and Wireless Laboratory, U.S. Food and Drug Administration, to investigate the use of LAA signals for wireless coexistence testing. A software defined radio platform was deployed to generate realistic LAA signals and measure the wireless coexistence impact on the LAA communication link. The equipment under test (EUT) used IEEE 802.11ac as an example incumbent technology in the 5 GHz band. The standardized radiated anechoic chamber method was used for testing. Results highlight the mutual coexistence impact of LAA in the 5 GHz band and suggest that selecting an LAA signal with the maximum possible channel time occupancy and the highest possible modulation and coding scheme (MCS) yields the most impactful coexistence situation on both the EUT and the LAA system. Additionally, an analysis of the internal LAA system states during coexistence testing is presented to document the inverse relationship between LAA transmit and wait times during coexistence and the adverse impact of challenging coexistence scenarios on successful channel access. Finally, the risk management process of wireless coexistence for medical devices is summarized and associated with coexistence testing.
Numerical and Experimental Analysis of Radiofrequency-Induced Heating Versus Lead Conductivity During EEG-MRI at 3 T
This study investigates radiofrequency (RF)-induced heating in a head model with a 256-channel electroencephalogram (EEG) cap during magnetic resonance imaging (MRI). Nine computational models were implemented each with different EEG lead electrical conductivity, ranging from 1 to 5.8 × 10 S/m. The peak values of specific absorption rate (SAR) averaged over different volumes were calculated for each lead conductivity. Experimental measurements were also performed at 3-T MRI with a Gracilaria Lichenoides (GL) phantom with and without a low-conductive EEG lead cap ("InkNet"). The simulation results showed that SAR was a nonlinear function of the EEG lead conductivity. The experimental results were in line with the numerical simulations. Specifically, there was a Δ of 1.7 °C in the GL phantom without leads compared to Δ of 1.8 °C calculated with the simulations. Additionally, there was a Δ of 1.5 °C in the GL phantom with the InkNet compared to a Δ of 1.7 °C in the simulations with a cap of similar conductivity. The results showed that SAR is affected by specific location, number of electrodes, and the volume of tissue considered. As such, SAR averaged over the whole head, or even SAR averaged over volumes of 1 or 0.1 g, may conceal significant heating effects and local analysis of RF heating (in terms of peak SAR and temperature) is needed.
Estimating the Likelihood of Wireless Coexistence Using Logistic Regression: Emphasis on Medical Devices
Medical device manufacturers incorporate wireless technology in their designs to offer convenience and agility to both patients and caregivers. However, the use of unlicensed radio spectrum bands by both medical devices and other equipment raises concerns about wireless coexistence. Work by the accredited standards committee C63 of the American National Standards Institute (ANSI) to provide the community with a consensus standard for coexistence evaluation resulted in the publication of the ANSI C63.27 standard, which was later recognized by the U.S. Food and Drug Administration. Estimating the likelihood of wireless coexistence of a system under test (SUT) in a given environment is central to the evaluation and reporting of wireless coexistence, as made clear in the C63.27 standard. However, no method to perform this estimation is provided. In this paper, we propose the use of logistic regression (LR) to estimate the likelihood of wireless coexistence of a medical device in its intended environment. Radiated open environment coexistence testing was used to realize a test scenario in which the interfering network was IEEE 802.11n Wi-Fi and the SUT was ZigBee; exemplary wireless technologies for interfering network and medical device, respectively. LR model fitting was then performed to derive a model that describes the performance of SUT under a range of wireless coexistence phenomena. Finally, results were incorporated with the outcome of a spectrum survey using Monte Carlo simulation to estimate the SUT likelihood of wireless coexistence in a hospital environment.
Correlation-Based Uncertainty in Loaded Reverberation Chambers
When reverberation chambers are loaded to increase the coherence bandwidth for modulated-signal measurements, a secondary effect is decreased spatial uniformity. We show that an appropriate choice of stirring sequence, consisting of a combination of mode-stirring mechanisms such as paddle and antenna-platform stirring, can mitigate the potential for increased uncertainty. We develop a new mode-stirring sample correlation model for uncertainty due to the stirring sequence. In a comparison with an empirical uncertainty analysis, the model is found to have an agreement within 2.5%. Our analysis is demonstrated for four loading cases in each of three reverberation chambers. The model is used to determine an optimal stirring sequence for a given chamber setup directly from correlations associated with each stirring mechanism. The model can also be understood in terms of the entropy of a measurement and it is shown that maximizing the entropy corresponds to a minimized uncertainty. The method presented here not only provides insight into sources of uncertainty but also allows users to determine an optimal mode-stirring sequence with minimized uncertainty for a given chamber setup.
Life-Time Dosimetric Assessment for Mice and Rats Exposed in Reverberation Chambers of the 2-Year NTP Cancer Bioassay Study on Cell Phone Radiation
In this paper, we present the detailed life-time dosimetry analysis for rodents exposed in the reverberation exposure system designed for the two-year cancer bioassay study conducted by the National Toxicology Program of the National Institute of Environmental Health Sciences. The study required the well-controlled and characterized exposure of individually housed, unrestrained mice at 1900 MHz and rats at 900 MHz, frequencies chosen to give best uniformity exposure of organs and tissues. The wbSAR, the peak spatial SAR and the organ specific SAR as well as the uncertainty and variation due to the exposure environment, differences in the growth rates, and animal posture were assessed. Compared to the wbSAR, the average exposure of the high-water-content tissues (blood, heart, lung) were higher by ~4 dB, while the low-loss tissues (bone and fat) were less by ~9 dB. The maximum uncertainty over the exposure period for the SAR was estimated to be <49% (k=2) for the rodents whereas the relative uncertainty between the group was <14% (k=1). The instantaneous variation (averaged over 1 min) was <13% (k=1), which is small compared to other long term exposure research projects. These detailed dosimetric results empowers comparison with other studies and provides a reference for studies of long-term biological effects of exposure of rodents to RF energy.
Improvement of Electromagnetic Field Distributions Using High Dielectric Constant (HDC) Materials for CTL-Spine MRI: Numerical Simulations and Experiments
This study investigates the use of pads with high dielectric constant (HDC) materials to alter electromagnetic field distributions in patients during magnetic resonance imaging (MRI). The study was performed with numerical simulations and phantom measurements. An initial proof-of-concept and validation was performed using a phantom at 64 MHz, showing increases of up to 10% in electromagnetic field when using distilled water as the high dielectric material. Additionally, numerical simulations with computational models of human anatomy were performed at 128 MHz. Results of these simulations using barium titanate (BaTiO) beads showed a 61% increase of [Formula: see text] with a quadrature driven RF coil and a 64% increase with a dual-transmit array. The presence of the HDC material also allowed for a decrease of SAR up to twofold (e.g., peak 10 g-averaged SAR from 54 to 22 W/kg with a quadrature driven RF coil and from 27 to 22 W/kg with a dual-transmit array using CaTiO powder at 128 MHz). The results of this study show that the use of HDC pads at 128 MHz for MRI spine applications could result in improved magnetic fields within the region of interest, while decreasing SAR outside the region.
RF Safety Evaluation of a Breast Tissue Expander Device for MRI: Numerical Simulation and Experiment
This study describes the MRI-related radio frequency (RF) safety evaluation of breast tissue expander devices to establish safety criteria. Numerical simulations and experimental measurements were performed at 64 MHz with a gel phantom containing a breast expander. Additionally, computational modeling was performed (64 and 128 MHz) with an adult female model, containing a virtually implanted breast tissue expander device for four imaging landmark positions. The presence of the breast tissue expander device led to significant alterations in specific absorption rate (SAR) and|B|distributions. The main source of SAR alterations with the use of the breast expander device was the saline-filled pouch of the expander. Conversely, the variation of RF magnetic field (B) was mainly caused by the metallic port. The measured values of electric field magnitude did not increase significantly due to the introduction of the expander device. The maximum 1g- or 10g-averaged SAR values in tissues near the implant were lower than those expected in other regions of the patient body with normalization of both|B|equal to 2 T at the coil isocenter and whole body averaged SAR equal to 4W/kg.
A Radio Frequency Radiation Exposure System for Rodents based on Reverberation Chambers
In this paper we present the novel design features, their technical implementation, and an evaluation of the radio Frequency (RF) exposure systems developed for the National Toxicology Program (NTP) of the National Institute of Environmental Health Sciences (NIEHS) studies on the potential toxicity and carcinogenicity of 2nd and 3rd generation mobile-phone signals. The system requirements for this 2-year NTP cancer bioassay study were the tightly-controlled lifetime exposure of rodents (1568 rats and 1512 mice) to three power levels plus sham simulating typical daily, and higher, exposures of users of GSM and CDMA (IS95) signals. Reverberation chambers and animal housing were designed to allow extended exposure time per day for free-roaming individually-housed animals. The performance of the chamber was characterized in terms of homogeneity, stirred to unstirred energy, efficiency. The achieved homogeneity was 0.59 dB and 0.48 dB at 900 and 1900 MHz respectively. The temporal variation in the electric field strength was optimized to give similar characteristics to that of the power control of a phone in a real network using the two stirrers. Experimental dosimetry was performed to validate the SAR sensitivity and determine the SAR uniformity throughout the exposure volume; SAR uniformities of 0.46 dB and 0.40 dB, respectively, for rats and mice were achieved.
Characterizing the 2.4 GHz Spectrum in a Hospital Environment: Modeling and Applicability to Coexistence Testing of Medical Devices
The increasing use of shared, unlicensed spectrum bands by medical devices and nonmedical products highlights the need to address wireless coexistence to ensure medical device safety and effectiveness. This paper provides the first step to approximate the probability of a device coexisting in its intended environment by providing a generalized framework for modeling the environment. The application of this framework is shown through an 84-day spectrum survey of the 2.4-2.48 GHz industrial, scientific, and medical band in a hospital environment in the United States. A custom platform was used to monitor power flux spectral density and record received power. Channel utilization of three nonoverlapping channels of 20 MHz bandwidth-relative to IEEE 802.11 channels 1, 6, and 11-were calculated and fitted to a generalized extreme value distribution. Low channel utilization was observed (<10%) in the surveyed environment with sporadic occurrences of higher channel utilization (>50%). Reported findings can be complementary to wireless coexistence testing. This paper can provide input to the development of a consensus standard for wireless device coexistence test methods and a consensus document focused on wireless medical device coexistence risk management.
A Significance Test for Reverberation-Chamber Measurement Uncertainty in Total Radiated Power of Wireless Devices
We develop a significance test that determines whether the component of uncertainty due to the finite number of stepped mode-stirring samples or the component due to the lack of spatial uniformity dominates for a particular chamber set-up and stirring sequence, as well as expressions for uncertainty for both cases. The significance test is illustrated with a measurement example comparing unloaded and loaded chambers for the measurement of a large-form-factor machine-to-machine device transmitting the W-CDMA protocol. Based on this example, we illustrate a method that allows users to estimate the minimum number of stepped mode-stirring samples needed to ensure that the component of uncertainty due to spatial uniformity dominates for a given chamber set-up, allowing use of a simplified expression for uncertainty.
International Intercomparison of Specific Absorption Rates in a Flat Absorbing Phantom in the Near-Field of Dipole Antennas
This paper reports the results of an international intercomparison of the specific absorption rates (SARs) measured in a flat-bottomed container (flat phantom), filled with human head tissue simulant fluid, placed in the near-field of custom-built dipole antennas operating at 900 and 1800 MHz, respectively. These tests of the reliability of experimental SAR measurements have been conducted as part of a verification of the ways in which wireless phones are tested and certified for compliance with safety standards. The measurements are made using small electric-field probes scanned in the simulant fluid in the phantom to record the spatial SAR distribution. The intercomparison involved a standard flat phantom, antennas, power meters, and RF components being circulated among 15 different governmental and industrial laboratories. At the conclusion of each laboratory's measurements, the following results were communicated to the coordinators: Spatial SAR scans at 900 and 1800 MHz and 1 and 10 g maximum spatial SAR averages for cubic volumes at 900 and 1800 MHz. The overall results, given as meanstandard deviation, are the following: at 900 MHz, 1 g average 7.850.76; 10 g average 5.160.45; at 1800 MHz, 1 g average 18.44 ± 1.65; 10 g average 10.14 ± 0.85, all measured in units of watt per kilogram, per watt of radiated power.
Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head
The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.