In vitro and in vivo evidence of the effectiveness of gallic acid on glycerol-induced acute kidney injuries
Because acute kidney injuries (AKI) are one of the critical health problems worldwide, studies on the risk factors, mechanisms, and treatment strategies seem necessary. Glycerol (GLY), known to induce cell necrosis via myoglobin accumulation in renal tubules, is widely used as an AKI model. This study aimed to evaluate the protective effects of gallic acid (GA) against GLY-induced AKI. The study utilized both in vivo and in vitro models. In vivo, healthy rats were divided into six groups: control (normal saline), GLY (10 mg/kg, intramuscularly), GLY + GA10 (10 mg/kg), GLY + GA50 (50 mg/kg), GLY + GA100 (100 mg/kg), and GA (100 mg/kg). GA was administered by gavage for seven consecutive days, followed by a single intramuscular injection of GLY. Kidney biomarkers, lactate dehydrogenase (LDH), oxidative stress markers, inflammatory indices, and histological parameters were assessed 72 h post-injection. In vitro, human embryonic kidney 2 (HK-2) cells were incubated with GLY and GA at different concentrations (30, 60, and 125 μg/ml) to evaluate cell viability, reactive oxygen species (ROS) production, oxidative stress, and inflammatory cytokines. GLY administration significantly elevated renal dysfunction markers, including blood urea nitrogen and creatinine, alongside oxidative stress and reduced cell viability. GA treatment improved kidney biomarkers, enhanced antioxidant enzyme activity, and reduced inflammatory cytokines. Histological analyses also showed improved kidney structural integrity in GA-treated rats compared to the GLY group. This study confirmed that GLY induces AKI through oxidative stress, inflammation, and structural damage. GA exhibited significant renal protective effects by enhancing antioxidant defenses and reducing inflammation. These findings support GA as a potential natural supplement for preventing or treating renal diseases.
AKT activation participates in Fascin-1-induced EMT in hepatoma cells
High expression of Fascin-1 involves high metastasis, high recurrence, and poor prognosis of cancers. However, the related regulatory mechanism in hepatocellular carcinoma (HCC) remains elusive. In this study, Fascin-1 was highly expressed in HCC tissues and cell lines. Fastin-1 protein levels and p-Akt1/Akt1 rate were increased by Akt activator SC79 and were decreased by Akt inhibitor LY294002. Silenced Fascin-1 suppressed cell proliferation, promoted cell apoptosis, suppressed cell invasion and epithelial-mesenchymal transition (EMT) in HCC cell lines. Also, silenced Fascin-1 induced cell cycle arrest in the G1 phase. Moreover, silenced Fascin-1 repressed invasion of HCC cells by inhibiting EMT. Besides, interference with Fascin-1 inhibited HCC cell growth, reduced Vimentin expressions and p-Akt1/Akt1 rate in vivo, while these impacts were abolished after injection of SC79. In conclusion, silencing Fascin-1 reduced the malignant growth of HCC, and this process was closely related to AKT inactivation.
Mechanism of microRNA-124-3p targeting calpain-1 to affect the function of intervertebral disc nucleus pulposus cells
Intervertebral disc degeneration (IVDD) represents a major cause of lower back pain, whose prevalence rises with age. This study probed into the mechanism of microRNA (miR)-124-3p regulating function of nucleus pulposus cells (NPCs) by targeting calpain-1 (CAPN1). Rat IVD NPCs were cultured in vitro and transfected with miR-124-3p mimics, miR-124-3p inhibitor, oe-CAPN1 and their negative controls. The mRNA levels of miR-124-3p and CAPN1 were assessed by RT-qPCR. Cell proliferation, apoptosis and migration were evaluated by CCK-8, flow cytometry and Transwell assays. Levels of CAPN1 protein, apoptosis-related proteins (BAX, Cleaved-Caspase3, BCL-2) and extracellular matrix (ECM) proteins (Collagen II, Aggrecan, Fibronectin, Collagen I, matrix metalloproteinase [MMP]-13) were determined by Western blot. The target binding relationship between miR-124-3p and CAPN1 was verified by dual-luciferase assay. miR-124-3p overexpression facilitated NPC function and the maintenance of ECM homeostasis, as evidenced by increased NPC proliferation and migration, decreased apoptosis, elevated apoptosis-related protein BCL-2 level, diminished BAX and Cleaved-Caspase3 levels, reduced levels of ECM homeostasis-associated factors Collagen I and MMP-13 proteins, as well as raised levels of Collagen II, Aggrecan and Fibronectin proteins. Conversely, miR-124-3p knockdown brought about the opposite results. miR-124-3p targeted CAPN1. Furthermore, overexpression of CAPN1 partially reversed the regulatory effects of miR-124-3p on the ECM homeostasis, proliferation and migration in NPCs, and promoted apoptosis. miR-124-3p contributed to proliferation and migration of IVD NPCs, and reduced their apoptosis by inhibiting CAPN1 expression, thereby modulating ECM homeostasis and maintaining the function of IVD NPCs.
Genes and proteins expression profile of 2D vs 3D cancer models: a comparative analysis for better tumor insights
When juxtaposed with 2D cell culture models, multicellular tumor spheroids demonstrate a capacity to faithfully replicate certain features inherent to solid tumors. These include spatial architecture, physiological responses, the release of soluble mediators, patterns of gene expression, and mechanisms of drug resistance. The morphological and behavioural similarities between 3D-cultured cells and cells within tumor masses highlight the potential of these models in studying cancer biology and drug responses. The liquid overlay method, hanging drop technique, and ultra-low adhesion plates are among the various methods for generating tumor spheroids, each with its advantages and applications. Gene expression studies, employing advanced methods such as microarrays, suppression subtractive hybridization, qRT-PCR, and mass-spectrometry-based proteomics revealed distinct expression patterns in 3D spheroids compared to 2D cultures, uncovering upregulation and downregulation of genes associated with tumor development, metastasis, and drug resistance. Protein expression studies identified alterations in key signaling pathways, metabolic characteristics, and phosphorylation levels, highlighting the impact of 3D culture on cellular responses. This study explores genes and proteins expression variations in various cancer cell lines cultivated in 3D spheroids, shedding light on the complexity of interactions in a more tumor-mimicking environment. The fusion of these analytical approaches not only advances scientific understanding but also holds promise for the development of more effective cancer treatments.
Mechanism underlying the role of the circRNA OMA1/miR-654-3p/RAF1 axis in children with inflammatory bowel disease
Inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, often emerges during childhood and poses significant challenges due to its adverse effects on growth, development, and psychosocial well-being. Circular RNAs (circRNAs) have been implicated in the pathogenesis of diverse diseases. However, the specific biological role and mechanisms of circRNA OMA1 in children with IBD remain largely unexplored. This study investigates the functions and mechanistic pathways of circRNA OMA1 in the progression of IBD. Quantitative real-time PCR (qRT-PCR) was employed to quantify circRNA OMA1 and miR-654-3p expression levels in the serum of children with IBD and in HT-29 cells. Downstream miRNA and mRNA targets of circRNA OMA1 were predicted using StarBase and validated via luciferase reporter assays. An in vitro IBD model was established by treating the human colonic epithelial cell line (HT-29) with 2% dextran sulfate sodium (DSS). Cell viability and apoptosis were assessed using the MTT assay and flow cytometry, respectively. Expression of the apoptosis-related protein cleaved caspase-3 was analyzed via western blotting, and proinflammatory cytokine levels (TNF-α, IL-1β, and IL-6) were measured using ELISA. The expression of circRNA OMA1 was notably lower in the serum of children with IBD and in DSS-treated HT-29 cells than in healthy controls, whereas miR-654-3p expression was upregulated. Bioinformatics analyses revealed a direct interaction between circRNA OMA1 and miR-654-3p. Overexpression of circRNA OMA1 through plasmid transfection increased circRNA OMA1 levels and suppressed miR-654-3p expression in HT-29 cells under both basal and DSS-stimulated conditions. Conversely, transfection with a miR-654-3p mimic reversed these effects. Upregulation of circRNA OMA1 ameliorated DSS-induced injury in HT-29 cells by enhancing cell viability, reducing apoptosis, and downregulating cleaved caspase-3 expression. Moreover, circRNA OMA1 overexpression inhibited the secretion of inflammatory cytokines TNF-α, IL-1β, and IL-6. However, these protective effects were partially reversed by treatment with the miR-654-3p mimic. Additionally, miR-654-3p was shown to directly target RAF1, negatively regulating its expression. The proliferation-promoting and apoptosis-suppressing effects of miR-654-3p inhibitor treatment were mitigated by RAF1-siRNA. Upregulation of circRNA OMA1 alleviates DSS-induced colonic cell apoptosis and inflammation by modulating the miR-654-3p/RAF1 axis. These findings suggest that circRNA OMA1 could be a promising biomarker for the diagnosis and treatment of IBD.
BSP promotes skin wound healing by regulating the expression level of SCEL
Burn injuries are complex, life-threatening events involving intricate cellular and molecular processes, including angiogenesis, which is vital for effective wound healing. polysaccharide (BSP), a bioactive compound from , exhibits anti-inflammatory and wound-healing properties. However, its impact on angiogenesis modulation, particularly through the synaptopodin-2-like (SCEL) gene, remains poorly understood. The effects of BSP on HMEC-1 cells exposed to lipopolysaccharide (LPS) were assessed using cell viability, migration, apoptosis, and angiogenesis assays. SCEL's role was explored through lentiviral transfection to manipulate SCEL expression. Animal models were employed to evaluate BSP's therapeutic potential in burn wound healing, with histological analysis, immunohistochemistry (IHC), and molecular assays to assess tissue repair and angiogenesis. BSP significantly alleviated LPS-induced damage in HMEC-1 cells by promoting cell survival, reducing apoptosis, and enhancing migration and angiogenesis. BSP treatment downregulated SCEL expression, reversing LPS-induced cellular damage. In SCEL-overexpressing cells and mice, BSP's beneficial effects on wound healing were attenuated, indicating SCEL's regulatory role in angiogenesis. In vivo, BSP accelerated burn wound closure, improved tissue organization, and enhanced angiogenesis, as evidenced by increased CD31 expression. SCEL overexpression impaired these effects, highlighting the essential role of SCEL downregulation in BSP-mediated healing. BSP promotes burn wound healing by modulating angiogenesis via SCEL downregulation, facilitating cell survival, migration, and vascularization. These findings position BSP as a promising therapeutic agent for burn wound treatment, with further investigation into SCEL's molecular mechanisms offering potential for novel wound care strategies.
Type IV collagen derived non-collagenous domain α6 (IV) NC1 and its derivative fragments inhibit endothelial cell proliferation and attenuates chorioallantoic membrane angiogenesis
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect. In the present study, full length α6(IV)NC1(Hexastatin) and its three subfragments α6S1(IV)NC1, α6S2(IV)NC1, and α6S3(IV)NC1 were validated for their pro-apoptotic and angio-inhibitory property. In order to construct the coding sequence of hexastatin and its three derivative partial peptide fragments were constructed with our proposed method, where the corresponding exons were amplified from the genomic DNA and then assembled together. Coding sequences were cloned and expressed using pLATE31 vector and recombinant proteins were purified with C-terminal His tag. The endogenous NC protein fragments of collagen IV were evaluated in vitro for their role in cytotoxicity on human umbilical vein endothelial cells (HUVECs). The results showed that the NC1 domain and its fragments inhibited the HUVECs cell proliferation, migration, invasion and induced apoptosis. The neovascularization inhibition was studied in in-vitro, via tube formation assay and in-vivo via the CAM Assay. The results showed that blood vessels and inter capillary network were inhibited in endothelial cells and also, in chick embryo treated with recombinant α6(IV)NC1 and its derivatives, except for α6S1(IV)NC1 and these endogenous protein inhibitors act as bio-therapeutics in inhibition of angiogenesis.
FXYD6 is transcriptionally activated by KLF10 to suppress the aggressiveness of gastric cancer cells
Despite improvements in therapeutic approaches, the mortality rate of gastric cancer (GC) remains unacceptably high. Evidence suggests that FXYD domain containing ion transport regulator 6 (FXYD6) is downregulated in GC. However, its exact function and the molecular mechanism in GC are still unclear. FXYD6 expression in different cell lines was estimated using RT-qPCR. Western blotting was employed for protein expression detection. Cell counting kit-8 assay, colony formation assay, and flow cytometry were implemented to assess GC cell viability, proliferation, and apoptosis, respectively. Bioinformatics analysis as well as chromatin immunoprecipitation and luciferase reporter assays were utilized for verifying FXYD6 interaction with the transcription factor Krüppel-like factor 10 (KLF10). The results showed that FXYD6 displayed a decreased level in GC cell lines. Impaired proliferative ability and enhanced apoptotic capacity were observed in GC cells overexpressing FXYD6. KLF10 expression is positively correlated with FXYD6 expression in GC samples. KLF10 binds to the FXYD6 promoter to enhance its transcription. FXYD6 depletion counteracted KLF10 upregulation-triggered reduction in GC cell proliferation and elevation in apoptosis. In conclusion, KLF10 activates FXYD6 transcription, thereby impeding GC cell proliferation and promoting cell apoptosis.
Cancer-associated fibroblast-derived exosomal FAM83F regulates KIF23 expression to promote the malignant progression and reduce radiosensitivity in non-small cell lung cancer
Cancer-associated fibroblasts (CAFs) have been shown to play a crucial role in the progression of non-small cell lung cancer (NSCLC). Exosomes derived from CAFs have emerged as important mediators of intercellular communication in the tumor microenvironment, contributing to cancer progression. Therefore, it is essential to further investigate the mechanisms by which CAF-derived exosomes regulate NSCLC. CAFs promoted NSCLC cell proliferation, invasion, and migration, while also suppressing radiosensitivity. We observed an upregulation of FAM83F expression in both NSCLC cells and NSCLC cells treated with conditioned medium from CAFs. Notably, CAF-derived exosomes were found to transfer FAM83F to NSCLC cells, thereby enhancing the malignant properties of the cancer cells. In contrast, FAM83F-deficient CAF-derived exosomes exerted inhibitory effects on NSCLC cell proliferation, invasion, and migration, while also sensitizing the cells to radiotherapy. FAM83F was found to interact with KIF23 in NSCLC cells, and the overexpression of KIF23 attenuated the effects induced by FAM83F-deficient exosomes in NSCLC cells. Moreover, FAM83F-deficient CAF-derived exosomes were effective in inhibiting tumor formation . Our findings highlight the crucial role of CAF-derived exosomal FAM83F in promoting NSCLC progression and conferring resistance to radiotherapy. Targeting this signaling pathway may offer promising therapeutic strategies for combating NSCLC progression and improving patient outcomes.
Suppressive effect of curcumin on apoptosis of articular chondrocytes via regulation on NF-κB pathway and NLRP3 inflammasome
Our study probed into how curcumin modulates NF-κB pathway to regulate articular chondrocytes. ATDC5 cells were exposed to varying concentrations of curcumin (0, 10, 20, 50, or 100 μM) for 48 h, followed by an assessment of curcumin's cytotoxicity. Cells were also treated with 10 ng/ml IL-1β, curcumin, 5 μg/L NF-κB inhibitor (PDTC), and 5 μM NLRP3 inflammasome inducer (nigericin) for 48 h, before cell viability, apoptosis, NF-κB pathway-related proteins, NLRP3 inflammasome-related proteins and inflammatory cytokines were detected. IL-1β treatment notably diminished chondrocyte viability and increased apoptosis, evidenced by elevated level of Bax and cleaved caspase-3, and reduced level of Bcl2, while such expression patterns were reversed by curcumin treatment in a concentration-dependent fashion. Additionally, NF-κB pathway and NLRP3 inflammasome in chondrocytes were activated by IL-1β treatment, but can also be suppressed following curcumin intervention. Furthermore, inhibition of NF-κB pathway curtailed the NLRP3 inflammasome activation and chondrocyte apoptosis, while activation of the NLRP3 inflammasome partially reversed the protective impacts of curcumin against chondrocyte apoptosis. Curcumin inhibits NF-κB pathway, thereby preventing the NLRP3 inflammasome activation and ameliorating IL-1β-induced apoptosis in articular chondrocytes.
Expression profiling of circular RNAs in sepsis-induced acute gastrointestinal injury: insights into potential biomarkers and mechanisms
This study aimed to investigate the role of circular RNAs (circRNAs) in sepsis-induced acute gastrointestinal injury (AGI), focusing on their potential as biomarkers and their involvement in disease progression. Peripheral blood samples from 14 patients with sepsis-induced AGI and healthy volunteers were collected. RNA sequencing was performed to profile circRNA and miRNA expression. Differential expression analysis identified key regulatory RNAs. Functional enrichment analysis was conducted to explore biological pathways, and circRNA-miRNA interaction networks were constructed. Significant differences in circRNA and miRNA expression profiles were observed between sepsis-induced AGI patients and healthy controls. Several circRNAs, including hsa_circ_0008381 and hsa_circ_0071375, exhibited stepwise expression increases correlating with AGI severity. Functional enrichment analysis indicated that the host genes of differentially expressed circRNAs are involved in key biological processes like protein ubiquitination, organelle maintenance, and cellular signaling pathways such as mitochondrial biogenesis and lipid metabolism. CircRNA-miRNA interaction networks suggested their role as miRNA sponges, regulating key downstream processes. This study demonstrated the potential of circRNAs as diagnostic biomarkers and therapeutic targets for sepsis-induced AGI. Further research is warranted to validate their clinical utility and unravel their mechanistic roles in AGI progression.
Expression and role of CTHRC1 in inflammatory bowel disease in children
Inflammatory bowel disease (IBD) is a chronic, progressive, immune-mediated, gastrointestinal inflammatory disease with increasing occurrences in children. Collagen triple helix repeat containing 1 (CTHRC1), a migration-promoting protein, acts as a tumor-promoting factor in malignant tumors. However, functions and mechanisms of CTHRC1 in children with IBD remain unclear. This study aimed to determine the effects and mechanisms of CTHRC1 on dextran sodium sulfate (DSS)-treated HT-29 cells. HT-29 control cells were exposed to 2% DSS to develop an in vitro IBD model. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to assess CTHRC1 expression in serum of children with IBD and HT-29 cells. Cell viability and apoptosis were assessed using MTT and flow cytometry (FCM). Expressions of cleaved-Caspase3 and Caspase3 were determined by western blotting. The cytokine production (TNF-α, IL-1β and IL-6) in HT-29 cells was measured by ELISA assay. Activation or inactivation of NF-κB signaling pathway was confirmed by western blot assay. Results showed that CTHRC1 expression was upregulated in the IBD serum and HT-29 control cells. The level of CTHRC1 was lower in CTHRC1-siRNA transfected cells than in control siRNA-treated cells. Notably, silence of CTHRC1 markedly enhanced HT-29 cells viability, decreased apoptotic cells, suppressed cleaved-Caspase3 expression, inhibited cleaved-Caspase3/Caspase3 ratio, reduced the production of inflammatory cytokines, and blocked NF-κB signaling pathway induced by DSS. However, these effects were reversed following diprovocim treatment. Thus, that knockdown of CTHRC1 alleviated DSS-induced HT-29 cell injury by inhibiting the NF-κB signaling pathway in vitro, providing a new therapeutic target for IBD in children.
Advancing brain tumor therapy: unveiling the potential of PROTACs for targeted protein degradation
The long-term treatment of malignancies, particularly brain tumors, is challenged by abnormal protein expression and drug resistance. In terms of potency, selectivity, and overcoming drug resistance, Proteolysis Targeting Chimeras (PROTACs), a cutting-edge method used to selectively degrade target proteins, beats traditional inhibitors. This review summarizes recent research on using PROTACs as a therapeutic strategy for brain tumors, focusing on their mechanism, benefits, limitations, and the need for optimization. The review draws from a comprehensive search of peer-reviewed literature, scientific databases, and clinical trial databases. Articles published up to the knowledge cutoff date up to 14 April 2023 were included. Inclusion criteria covered PROTAC-based brain tumor therapies, including preclinical and early clinical studies, with no restrictions on design or publication type. We included studies using in vitro, in vivo brain tumor models, and human subjects. Eligible treatments involved PROTACs targeting proteins linked to brain tumor progression. We evaluated the selected studies for methodology, including design, sample size, and data analysis techniques. A narrative synthesis summarized key outcomes and trends in PROTAC-based brain tumor therapy. Recent research shows PROTACs selectively degrade brain tumor-related proteins with minimal off-target effects. They offer enhanced potency, selectivity, and the ability to combat resistance compared to traditional inhibitors. PROTACs hold promise for brain tumor treatment offering advantages over traditional inhibitors, but more research is needed to refine their mechanisms, efficacy, and safety. Larger-scale trials and translational studies are essential for assessing their clinical utility.
The protective role of baicalin regulation of autophagy in cancers
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy. Autophagy plays a key role in regulating multiple physiological and pathological processes, such as cell metabolism, development, energy homeostasis, cell death and hunger adaptation, and so on. Increasing evidence indicates that autophagy dysfunction participates in many kinds of cancers, such as liver cancer, pancreatic cancer, prostate cancer, and so on. However, the relevant mechanisms are not yet fully understood. Baicalin is a natural flavonoid compound extracted from the traditional Chinese medicine . The research has shown that after oral or intravenous administration of baicalin, it is delivered to various organs through the systemic circulation, with the highest volume in the kidneys and lungs. More and more evidence suggests that baicalin has antioxidant, anticancer, anti-inflammatory, anti-apoptotic, immunomodulatory and antiviral effects. Therefore, baicalin plays an important role in various diseases, such as cancers, lung diseases, liver diseases, cardiovascular diseases, ans so on. However, the relevant mechanisms have not yet been fully clear. Recently, increasing evidence indicates that baicalin participates in different cancer by regulating autophagy. Herein, we reviewed the current knowledge about the role and mechanism of baicalin regulation of autophagy in multiple types of cancers to lay the theoretical foundation for future related researches.
The study on bone marrow mesenchymal stem cell-derived extracellular matrix promoting the repair of damaged chondrocytes by regulating the Notch1/RBPJ pathway
Cartilage and joint damage can lead to cartilage degeneration. Bone marrow mesenchymal stem cells (BMSCs) have the potential to address cartilage damage. Hence, this study probed the mechanism of BMSC-extracellular matrix (BMSC-ECM) in promoting damaged chondrocyte repair by regulating the Notch1/RBPJ pathway. Human immortalized chondrocytes were cultured in vitro and treated with Notch1 small interfering (si)RNA, pCDNA3.1-Notch1, RBPJ siRNA and their negative controls (NCs). Damaged chondrocytes were constructed. Damaged chondrocyte-BMSC co-culture system was established and treated with lentiviral vector carrying short hairpin-Notch1 and its NC. Cell viability and apoptosis were assessed by CCK-8 and flow cytometry assays. Levels of glycosaminoglycan (GAG), Notch1 and RBPJ mRNA, and Notch1, RBPJ, Col2α1, mmp3, Hes1 and Hey1 were determined by a kit, RT-qPCR and Western blot. NICD nuclear translocation was detected by immunofluorescence. Damaged chondrocytes exhibited down-regulated Notch1 expression, reduced cell viability, and enhanced apoptosis. Further Notch1 knockdown aggravated chondrocyte damage, whereas its overexpression enhanced chondrocyte viability and decreased apoptosis. NICD translocated into the nucleus and bound to RBPJ to activate the Notch1 pathway. RBPJ silencing partly annulled Notch1-regulated damaged chondrocyte apoptosis. BMSC-damaged chondrocyte co-culture up-regulated Notch1, RBPJ, Col2α1, mmp3, Hes1, Hey1 and GAG levels, enhanced cell viability, and reduced apoptosis in chondrocytes, which were partly negated by Notch1 suppression, indicating that BMSC-ECM facilitated damaged chondrocyte repair by activating the Notch1/RBPJ pathway. BMSC-ECM promoted the repair of damaged chondrocytes by promoting NICD translocation into the nucleus and binding to RBPJ to activate the Notch1 pathway.
Growth suppressing effect of extracts on cancerous cell line
Homeostasis of tissues requires a complex balance between cell proliferation and cell death. The disruption of this balance leads to tumors. Cancer is a mortal disease that spreads all over the body, it is an irregular cell growth. All the tumors are not cancerous, benign tumors do not spread to all body parts. Cancer is caused when cells start to grow out of control, known as increased proliferation. Cancer is of many kinds and the reason for cancer is the uncontrolled growth of cells that can affect any tissue of the body Conventional plants are precious sources of novel cytotoxic agents and are still in a better role in health concerns. The study aimed to evaluate the effect of in vitro anti-proliferative activity of plant extracts against HeLa and HepG2 cell lines and compared with normal BHK cells. plant (seed, leaves, fruit peel, fruit pulp, stem, and root) is extracted in their solvent's ethanol, ethyl acetate, and petroleum ether. For the estimation of anti-proliferation, cell viability, and cell death in HeLa, HepG2, BHK, MTT assay was done. The angiogenic potential was checked via Immunocytochemistry and ELISA of VEGF. Immunocytochemistry and ELISA of Annexin-V were performed for the estimation of apoptosis in HeLa cells and BHK. Furthermore, Immunocytochemistry and ELISA for p53 were also performed. Cancer cells (HeLa, HepG2) showed reduced angiogenesis, low proliferation, increased apoptotic level, reduced viability, and increased cell death. It is found that plant extract induces apoptosis along with inhibition of proliferation and angiogenesis may strongly have profound effects on growth suppression of HeLa and HepG2 cell lines.
Neurotrophomodulatory effect of TNF-α through NF-κB in rat cortical astrocytes
Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades. Both TNFR1 and TNFR2 are expressed in astrocytes, which are specialized glial cells essential for maintaining the structural and functional integrity of the central nervous system (CNS). Astrocytes support neuronal function by regulating brain homeostasis, maintaining synaptic function, and supplying metabolic substrates. In addition, astrocytes are known to secrete a variety of growth factors and neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4/5. These neurotrophins play a critical role in supporting neuronal survival, synaptic plasticity, and myelination within the brain. The present study focuses on the role of TNF-α in modulating neurotrophin expression and secretion in rat cortical astrocytes. We demonstrate that TNF-α induces the upregulation of neurotrophins, particularly NGF and BDNF, in cultured astrocytes. This effect is accompanied by an increase in the expression of their respective receptors (TrkA & TrkB), further suggesting a functional modulation of neurotrophic signaling pathways. Notably, we show that the modulation of neurotrophin expression by TNF-α is mediated via the NF-κB signaling pathway. Additionally, we observed that TNF-α also regulates the secretion levels of NGF and BDNF into the culture media of astrocytes in a dose-dependent manner, indicating that TNF-α can modulate both the production and release of these growth factors. Taken together, our findings highlight a previously underexplored neuroprotective role of TNF-α in astrocytes. Specifically, we propose that TNF-α, through the upregulation of neurotrophins, may contribute to maintaining neuronal health and supporting neuroprotection under disease conditions.
Oral cell lysates reduce osteoclastogenesis in murine bone marrow cultures
Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.7 macrophage cell lines for their potential to modulate in vitro osteoclastogenesis in murine bone marrow cultures. We also tested the impact of necrotic lysates on modulating the expression of inflammatory cues in murine ST2 bone marrow stromal cells. We report here that independent of human or murine origin, all cell lysates significantly reduced in vitro osteoclastogenesis in bone marrow cultures, as indicated by the expression of the osteoclast marker genes cathepsin K and tartrate-resistant acid phosphatase and the respective histochemical staining in multinucleated cells. We also found that lysates from HSC2 and TR146 cells significantly pushed the expression of CCL2, CCL5, CXCL1, IL1, and IL6 in ST2 cells. These findings suggest that oral cell lysates reduce in vitro osteoclastogenesis, but only damaged oral squamous carcinoma cells can force murine stromal cells to produce an inflammatory environment.
Anti-angiogenic and anti-oxidant effects of 2-NTI indole derivative vs. suramin in ex vivo, in vivo, and in vitro studies
Angiogenesis is an intricate pathway that involves the formation of new blood capillaries from old, functioning ones. Improper angiogenesis is a feature of numerous maladies, including malignancy and autoimmune disorders. Indole-related derivatives are believed to interfere with the mitotic spindle, inhibiting the multiplication, and invasion of cancerous human cells. 5-bromo-2-(5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)-1H-indole (2-NTI) is one of such compounds with outstanding anti-angiogenic, and anti-proliferative properties. To evaluate 2-NTI's antiangiogenic and anti-oxidant activities and potential mechanisms of action in comparison with the standard agent, suramin. The rat aortic ring (RAR) and Chick chorioallantois membrane (CAM) assays were employed to determine antiangiogenic efficacy and dose response, while the DPPH assay estimated free radical scavenging activity. Besides, an MTT test was performed to evaluate antiproliferative activity in HUVECs; however, RT-PCR assessed the gene expression level of VEGF in HCT116 cells. 2-NTI displayed a significant and dose-dependent suppression of angiogenesis (83.04%) at 100 μg/mL concentration versus the negative controls in the RAR assay. 2-NTI also showed no toxicity in the HUVEC cell line, with an IC50 of 876.6 μg/mL, but it significantly reduced the formation of free radicals (IC50 of 135.2 µg/mL) and VEGF gene expression (at doses of 200 and 400 µg/mL) versus the negative controls and suramin. In CAM model, 2-NTI generated considerable blood vessel regression as compared to the negative control. 2-NTI possesses potent anti-angiogenic actions, which might be explained by its profound anti-proliferative and free radical detoxifying activities.
Evaluating the impact of media and feed combinations on CHO cell culture performance and monoclonal antibody (trastuzumab) production
The choice of media and feeds significantly influences the performance of Chinese Hamster Ovary (CHO) mammalian cell cultures in producing desired biologics like monoclonal antibodies (mAb). Sub-optimal nutrient feed/media composition can severely impact cell proliferation and the quality of the final mAb product. For instance, proper protein glycosylation, crucial for mAb stability, safety, and efficacy, heavily relies on cell culture conditions. Currently, starter CHO culture media and daily supplemental feeds used in industrial manufacturing consist of proprietary composition of nutrients critical for mAb production. Standardized optimal media/feed combinations necessary for different cell lines are often lacking, necessitating individualized optimization for each cell line and mAb product. Here, we focused on a CHO-K1 cell line engineered to produce a Trastuzumab biosimilar and evaluated the effects of fourteen commercially relevant basal media and seven feeds on cell culture parameters such as viable cell density, viability, nutrient consumption, metabolite production, mAb titer, and mAb N-glycosylation. Our findings demonstrate clearly that the compositions of the basal medium and feed play a pivotal role in enhancing cell growth and mAb production. This work offers valuable insights into strategies for optimizing feed/media composition for glycosylated monoclonal antibody production using CHO cells.
LncRNA NORAD sponging to miR-26b-5p represses the progression of Alzheimer's disease in vitro by upregulating MME expression
Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay. PC12 cells were processed with Aβ to construct an AD model in vitro, and LncRNA NORAD and miR-26b-5p levels in PC12 cells were identified by RT-qPCR. Cell viability and apoptosis were measured using the MTT assay and flow cytometry, respectively. LDH release and oxidative stress-related indicators (MDA, SOD, and CAT) were detected using the corresponding kits, and the levels of Bcl-2 and Bax were assessed by western blotting and RT-qPCR. Aβ distinctly decreased LncRNA NORAD and membrane metalloendopeptidase (MME) levels in PC12 cells, while miR-26b-5p was generally increased. The LncRNA NORAD can adsorb miR-26b-5p, and the target gene of miR-26b-5p is neprilysin (MME). In the Aβ induced AD model, PC12 cell activity decreased, LDH release and apoptosis increased, oxidative stress level increased, Bax expression increased, and Bcl-2 expression decreased. LncRNA NORAD plays a protective role in AD cell models by abrogating miR-26b-5p levels. Inhibition of MME expression eliminated the protective effects of the miR-26b-5p inhibitor in AD cell models. LncRNA NORAD inhibits AD progression in vitro by modulating the miR-26b-5p-MME signaling axis. The LncRNA NORAD/miR-26b-5p is expected to be a prospective therapeutic candidate for AD.